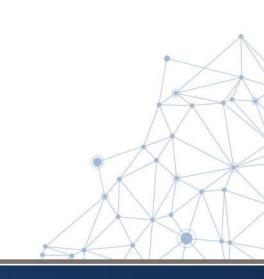
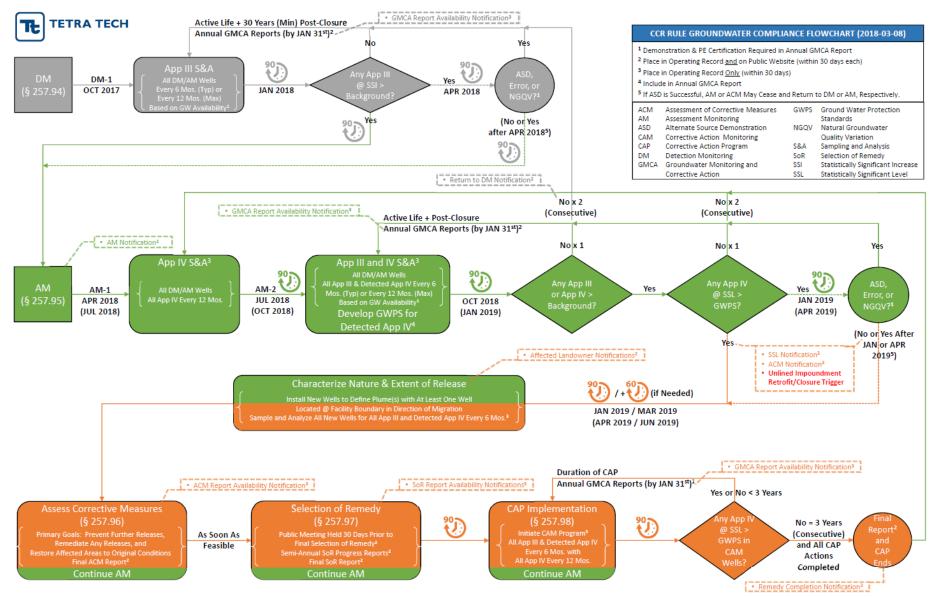


Remedial Technologies to Address CCR Constituents in Groundwater

Environmental Show of the South – May 2018



Agenda


Topics to be Covered

- Overview of CCR Rule Groundwater Monitoring Program and Timeline
 - Baseline Monitoring
 - Detection Monitoring
 - Assessment Monitoring
- Corrective Measures Assessment
- Selection of Remedy
- Remediation and Timeline

CCR Rule Groundwater Monitoring

Initial (Baseline) Monitoring

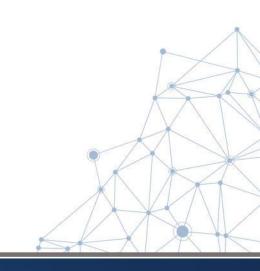
- Minimum of 8 independent samples per well or spring required (background/upgradient and downgradient)
- Analyze for all Appendix III and Appendix IV parameters
- Sufficient number of samples obtained and analyzed for all four CCR units

Appendix III	Appendix IV		
Boron	Antimony	Lead	
Calcium	Arsenic	Lithium	
Chloride	Barium	Mercury	
Fluoride	Beryllium	Molybdenum	
рН	Cadmium	Radium 226+228	
Sulfate	Chromium	Selenium	
Total Dissolved Solids	Cobalt	Thallium	
	Fluoride		
Initial Monitoring Detection Monitoring			

Statistical Analysis of Data

• Goals of Statistical Analysis:

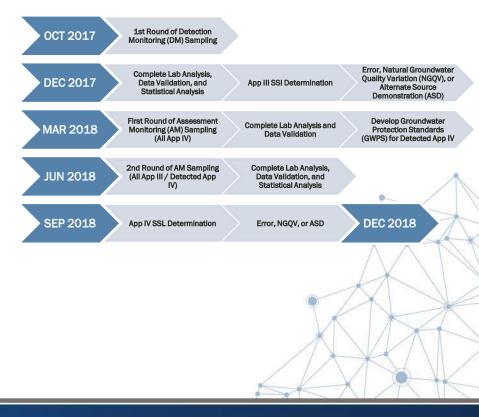
- Determine if statistically significant increase (SSI) greater than background concentrations for each Appendix III parameter for Detection Monitoring
- Determine if statistically significant level (SSL) greater than MCL or alternative criteria concentrations for each Appendix IV parameter for Assessment Monitoring
- Determine if Appendix IV parameters in downgradient wells have been below MCL or alternate criteria for 3 consecutive years after Corrective Action Measures implemented


Statistical Analysis is Dynamic

Appendix III	Appendix IV	
Boron	Antimony	Lead
Calcium	Arsenic	Lithium
Chloride	Barium	Mercury
Fluoride	Beryllium	Molybdenum
рН	Cadmium	Radium 226+228
Sulfate	Chromium	Selenium
Total Dissolved Solids	Cobalt	Thallium
	Fluoride	

General Characteristics of Sites

- Located near rivers or other major water bodies
- Selection of upgradient and downgradient monitoring well locations
- Sites located on Karst with selection of springs as monitoring locations
- Existing water treatment systems



Next Steps in CCR Compliance Timeline

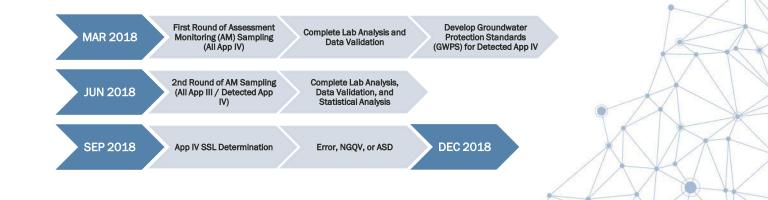
- CCR Rule Overview
- Next steps in CCR Compliance Timeline
 - Detection Monitoring
 - Error Analysis
 - Natural Groundwater Quality Variation
 - Alternate Source Determination
 - Assessment Monitoring
 - Same as Above

What is Unknown

Detection Monitoring

Appendix III	Appendix IV			
Boron	Antimony Lead			
Calcium	Arsenic	Lithium		
Chloride	Barium Mercury			
Fluoride	Beryllium	Molybdenum		
рН	Cadmium	Radium 226+228		
Sulfate	Chromium Selenium			
Total Dissolved Solids	Cobalt Thallium			
	Fluoride			

• Minimum semi-annual (2x year) monitoring for Appendix III

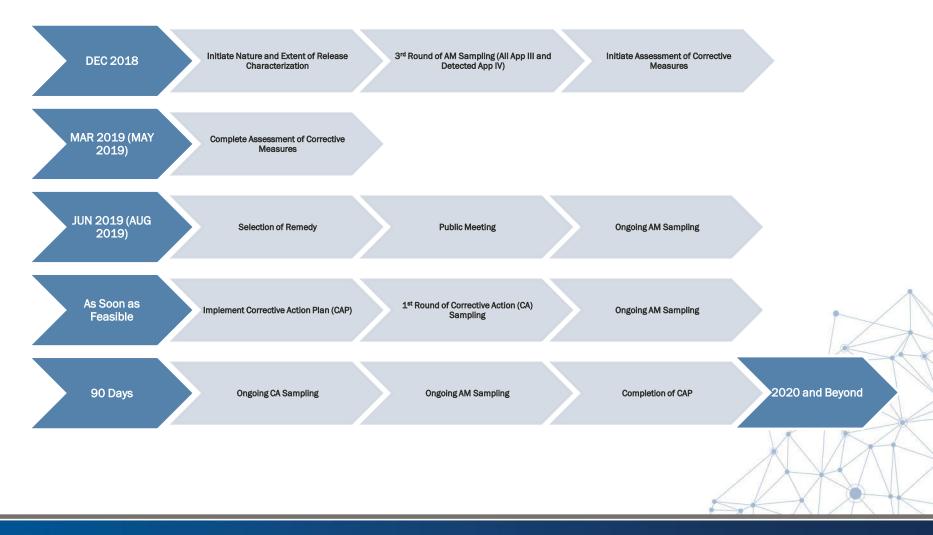


Assessment Monitoring-Baseline

Data

Appendix III	Appendix IV			
Boron	Antimony	Lead		
Calcium	Arsenic Lithium			
Chloride	Barium Mercury			
Fluoride	Beryllium Molybdenum			
рН	Cadmium Radium 226+22			
Sulfate	Chromium Selenium			
Total Dissolved Solids	Cobalt Thallium			
	Fluoride			

• If Appendix III SSI's are confirmed (no errors, natural groundwater variation, or alternate sources), initiate Assessment Monitoring


Assessment Monitoring-Baseline Data

- Initially analyze for App IV and establish Groundwater Protection Standards (GWPS) for each App IV constituent
- GWPS = Maximum Contaminant Level (MCL) if one exists, or background concentration, whichever is higher
- Within 90 days, resample for App IV constituents that were previously detected plus App III list
- If Appendix IV constituents are detected at a Statistically Significant Level (SSL) > GWPS, must characterize the nature and extent of the release
- Within 90 days, initiate assessment of corrective measures
- If SSL > GWPS for an unlined impoundment, cease receipt of CCR and initiate closure within 6 months (Ash Pond June 2019)

Appendix III	Appendix IV	
Boron	Antimony	Lead
Calcium	Arsenic	Lithium
Chloride	Barium Mercury	
Fluoride	Beryllium	Molybdenum
рН	Cadmium	Radium 226+228
Sulfate	Chromium	Selenium
Total Dissolved Solids	Cobalt	Thallium
	Fluoride	

Corrective Measures Assessment & Selection of Remedy

Corrective Measures Assessment & Selection of Remedy

- Corrective Measures Assessment Goals:
 - Prevent further releases
 - Remediate any releases
 - Restore affected area to original conditions

- Step 1 Collect and Evaluate Additional Data (Remedial Investigation/RFI)
 - Define nature and extent of contamination
 - Additional monitoring wells, dye traces
 - Additional sampling for broad suite of analytes
 - Update the conceptual site model
 - Geology
 - Hydrogeology
 - Geochemistry
 - Data to support analysis of remedial alternatives

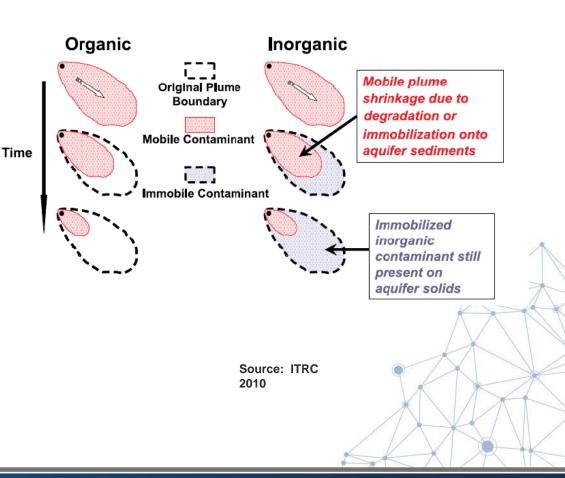
Corrective Measures Assessment & Selection of Remedy

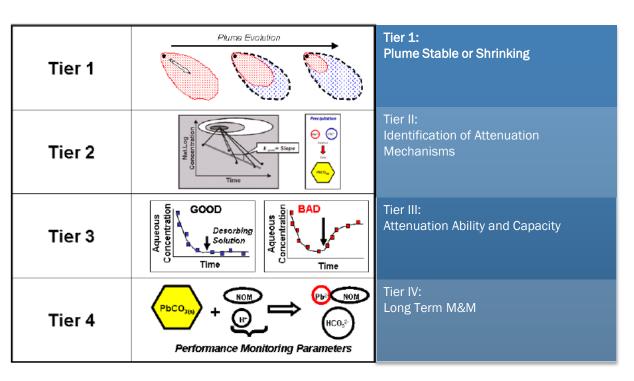
- Step 2 Evaluate a Range of Corrective Measures (Feasibility Study/CMS)
 - Select feasible remedial approach
 - Addresses the contaminants
 - Implementable
 - Cost-effective
- Step 3 Select preferred approach (Proposed Plan)
 - Detailed analysis of selected approach
 - Regulator approval
 - Public meeting


- Step 4 Finalize preferred approach (Record of Decision/Statement of Basis)
 - Final adjustments to preferred approach
 - Schedule for design and implementation
- Step 5 Detailed design (Remedial Action Work Plan/Design)
 - Possible Pre-design data collection
 - Define performance evaluation criteria
- Step 6 Design Implementation (Remedial Action/CMI)
 - Remedy construction/installation
 - Remedy operation and maintenance

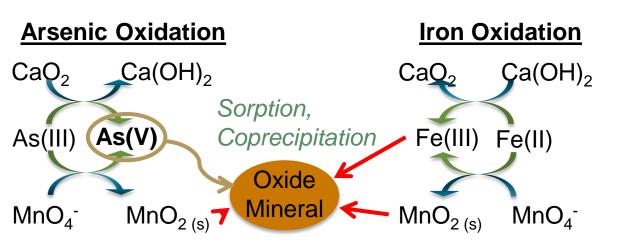
Corrective Measures Assessment & Selection of Remedy

Options


- Pump and Treat (existing water treatment systems)
- Monitored Natural Attenuation (MNA)
- In-Situ Treatments (i.e., Sorption/Precipitation)
- Permeable Reactive Barriers
- Cut-Off Walls (in combinations)


MNA – Application to Inorganics

- Inorganic MNA applicable to the Appendix IV metals
- MNA relies on physical and chemical processes in the aquifer to address mobile contaminant
- MNA as a remedy normally requires:
 - Source control
 - Detailed conceptual model to predict behavior
 - Long-term monitoring with periodic updates of the conceptual model

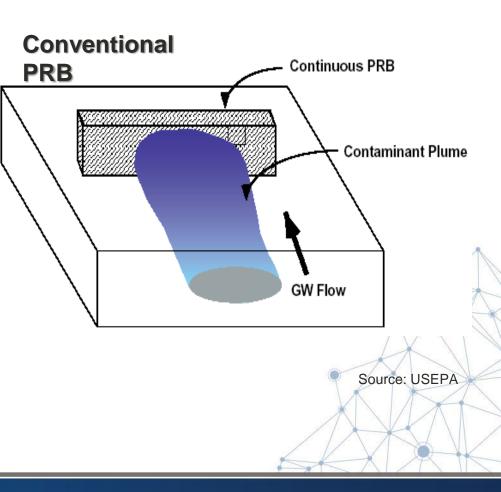

MNA and Appendix IV Inorganics

 Data to evaluate MNA as corrective action collected as part of investigation to define nature and extent of contamination

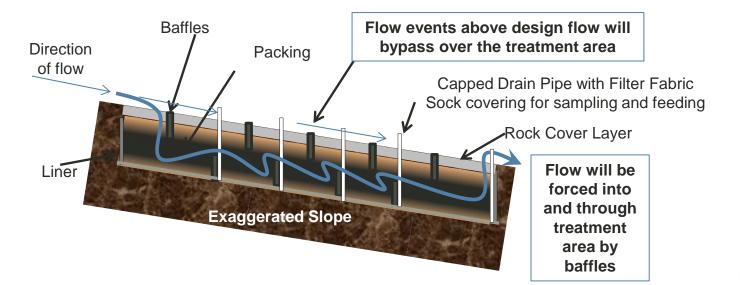
Manipulate Aquifer Geochemistry

- Approach: Oxidize As (III) to As(V), Increase sorptive capacity
 - Oxidants under study: Permanganate, Calcium Peroxide
 - Manganese oxides: Increase sorptive capacity
 - Ferrous sulfate oxidation: Increase sorptive capacity
 - Calcium peroxide: pH buffer on iron hydrolysis

Manipulate Aquifer Geochemistry


- Can you manipulate the aquifer to precipitate Appendix IV metals from groundwater?
- Metal phosphates, sulfates, sulfides and hydroxides can be insoluble
 - Permeable reactive barrier design could incorporate sources of anions
 - Aquifer chemistry may be manipulated to precipitate metals (e.g., modification of in situ bioreactor)

Appendix IV Metal		К	'sp	
	Phosphate	Sulphate	Sulfide	Hydroxide
Antimony			1.6x10 ⁻⁹³	
Arsenic		Anionic		
Barium	3.4x10 ⁻²³	1.08x10 ⁻¹⁰		2.55x10 ⁻⁴
Beryllium				6.92x10 ⁻²²
Cadmium	2.53x10 ⁻³³		1x10 ⁻²⁷	7.2x10 ⁻¹⁵
Chromium				3x10 ⁻²⁹
Cobalt	2.05x10 ⁻³⁵		5x10 ⁻²²	5.92x10 ⁻¹⁵
Lead		2.53x10 ⁻⁸	3x10 ⁻²⁸	1.43x10 ⁻²⁰
Lithium	2.37x10 ⁻¹¹			
Mercury		6.5x10 ⁻⁷	2x10 ⁻⁵³	3.6x10 ⁻²⁶
Molybdenum		Anio	onic	
Radium		3.66x10 ⁻¹¹		
Selenium		Anio	onic	
Thallium			6x10 ⁻²²	1.68x10 ⁻⁴⁴
				AXT


Permeable Reactive Barrier

- Reactive media in the PRB tailored to the contaminants of concern, e.g.,
 - Alumina to adsorb As
 - Apatite (phosphate) to precipitate lithium
 - Iron filings to sorb arsenic and molybdenum oxyanions
 - Sulfate source to precipitate radium

Field Design of Packed Bed

Source: US Army Corps of Engineers, Engineer Research and Development Center – Patent Pending

Pilot Scale Implementation

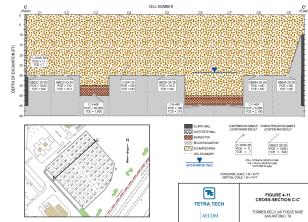
Sampling and Data Logging Unit

Permeable Reactive Barrier Installation

Long Stick Excavation

- Slurry Trench
- Bench Setting

One-Pass Trencher



In Situ Bioreactors

- Engineered subsurface mechanism to control the groundwater chemistry
 - Provides an initial "jolt" to the system
 - Mechanism for recharging the feed system
 - Biotic or abiotic actions can be stimulated

Case Study I – In Situ Bioreactors

Summary and Questions

- Sites often present physical limitation on remedial approaches (e.g., proximity to rivers)
- Sites often have extensive experience with conventional water treatment systems – pump and treat may be an attractive option
- CCR-related metals can be addressed with conventional remedial approaches
- CCR-related metals may be amenable to innovative in situ approaches
- Questions