The following example problem is for the design of a rip rap lined channel. This design is based upon U.S. Department of Transportation - Federal Highway Administration: Hydraulic Engineering Circular Number 15 (HEC15) and involves an iterative p Note that many designs typically have design constraints such as limited easement width or right of way. Each design must be consistent with the site layout and must clearly address the design constraints.

GIVEN:

Design a rip rap lined channel to non-erosively convey the 5 year storm event.

$$
\begin{aligned}
& \mathrm{Q}_{5}=17.4 \mathrm{cfs} \\
& 3: 1 \text { side slopes }(\mathrm{Z}=3) \\
& \mathrm{S}=8 \%=0.08 \\
& \text { Trapezoidal Shape }
\end{aligned}
$$

REQUIRED:

Determine the required riprap D_{50} through an iterative process. Then compare the required D_{50} size to the trial D_{50} size. If D_{50} required < trial D_{50} then the rip rap size is adequate. However, a smaller more cost effective rip rap size should be considered if the trial $D_{50} \geq 110 \%$ of the required D_{50}.

SOLUTION:

Step 1:

$$
\begin{aligned}
& \mathrm{Q}=17.4 \mathrm{cfs} \\
& \mathrm{~S}=8 \%=0.08 \\
& Z=\frac{e}{d}=3
\end{aligned}
$$

Step 2:
Trial $\mathrm{D}_{50}=1.25^{\prime}$ (Very Angular)

Step 3:

$\mathrm{d}_{\mathrm{i}}=1.00 \mathrm{ft}$

$$
\mathrm{d}_{\mathrm{a}}=\mathrm{A} / \mathrm{T}=0.70 \mathrm{ft}
$$

$$
\begin{array}{ll}
A=B d+Z d^{2}=7.00 \mathrm{sq} \mathrm{ft} & A_{a}=B d+Z d^{2}=4.27 \mathrm{sq} \mathrm{ft} \\
T=B+2 d Z=10.00 \mathrm{ft} & T_{a}=B+2 d Z=8.20 \mathrm{ft} \\
R=\frac{b d+Z d^{2}}{b+2 d \sqrt{Z^{2}+1}}=0.68 \mathrm{ft} & R a=\frac{b d+Z d^{2}}{b+2 d \sqrt{Z^{2}+1}}=0.51 \mathrm{ft}
\end{array}
$$

Step 4: $\quad d_{a} / D_{50}=0.56 \leq 1.5$ therefore use Equation 7.27-4

$$
\begin{aligned}
& n=\frac{\alpha d_{a}{ }^{1 / 6}}{\sqrt{g} f(F r) f(R E G) f(C G)}=0.078 \\
& b=1.14\left(\frac{D_{50}}{T_{a}}\right)^{0.453}\left(\frac{d_{a}}{D_{50}}\right)^{0.814}=0.303 \\
& v=Q / A_{a}=4.075 \mathrm{ft} / \mathrm{sec} \\
& F r=\frac{v}{\sqrt{g d_{a}}}=0.858 \\
& f(F r)=\left(\frac{0.28 F r}{b}\right)^{\log (0.755 / b)}=0.912
\end{aligned}
$$

$$
\begin{aligned}
& f(R E G)=3.434\left(\frac{T_{a}}{D_{50}}\right)^{0.492} b^{1.025\left(\frac{T_{a}}{D_{50}}\right)^{0.118}=7.363} \\
& f(C G)=\left(\frac{T_{a}}{d_{a}}\right)^{-b}=0.474
\end{aligned}
$$

Note: Subcritical flow, Froude Number (Fr) less than 1, which is desirable. Now check trial flow.

Step 5: $\quad Q=\frac{1.49}{n} A_{a} R_{a^{\frac{2}{3}}} S^{\frac{1}{2}}=14.72 \mathrm{cfs}$
This flow is not within 5% of 17.4 cfs ; therefore return to step 3 and select a new depth $\left(d_{i+1}\right)$.

Step 3(2): \quad Using equation 7.27-2 obtain a new $d_{i}\left(d_{i+1}\right)$:

\[

\]

Step 4(2): $\quad d_{a} / D_{50}=0.59 \leq 1.5$ therefore use Equation 7.27-4

$$
n=\frac{\alpha d_{a}^{1 / 6}}{\sqrt{g} f(F r) f(R E G) f(C G)}=0.080
$$

$$
b=1.14\left(\frac{D_{50}}{T_{a}}\right)^{0.453}\left(\frac{d_{a}}{D_{50}}\right)^{0.814}=0.313
$$

$$
v=Q / A_{a}=3.778 \mathrm{ft} / \mathrm{sec}
$$

$$
F r=\frac{v}{\sqrt{g d_{a}}}=0.774
$$

$$
f(F r)=\left(\frac{0.28 F r}{b}\right)^{\log (0.755 / b)}=0.869
$$

$$
f(R E G)=3.434\left(\frac{T_{a}}{D_{50}}\right)^{0.492} b^{1.025\left(\frac{T a}{D_{50}}\right)^{0.118}}=7.746
$$

$$
f(C G)=\left(\frac{T_{a}}{d_{a}}\right)^{-b}=0.466
$$

Step 5(2):

$$
Q=\frac{1.49}{n} A_{a} R_{a}^{\frac{2}{3}} S_{f}^{\frac{1}{2}}=15.99 \mathrm{cfs}
$$

This flow is not within 5% of 17.4 cfs; therefore return to step 3 and select a new depth $\left(d_{i+2}\right)$

Step 3(3): \quad Using equation 7.27-2 obtain a new $d_{i}\left(d_{i+2}\right)$:

\[

\]

Step 4(3): $\quad d_{a} / D_{50}=0.61 \leq 1.5$ therefore use Equation 7.27-4

$$
n=\frac{\alpha d_{a}^{1 / 6}}{\sqrt{g} f(F r) f(R E G) f(C G)}=0.080
$$

$$
b=1.14\left(\frac{D_{50}}{T_{a}}\right)^{0.453}\left(\frac{d_{a}}{D_{50}}\right)^{0.814}=0.319
$$

$$
v=Q / A_{a}=3.624 \mathrm{ft} / \mathrm{sec}
$$

$$
F r=\frac{v}{\sqrt{g d_{a}}}=0.731
$$

$$
f(F r)=\left(\frac{0.28 F r}{b}\right)^{\log (0.755 / b)}=0.847
$$

$$
f(R E G)=3.434\left(\frac{T_{a}}{D_{50}}\right)^{0.492} b^{1.025\left(\frac{T_{a}}{D_{50}}\right)^{0.118}}=7.963
$$

$$
f(C G)=\left(\frac{T_{a}}{d_{a}}\right)^{-b}=0.462
$$

Step 5(3):
$Q=\frac{1.49}{n} A_{a} R_{a}{ }^{\frac{2}{3}} S_{f}^{\frac{1}{2}}=16.75 \mathrm{cfs}$
This flow is within 5% of 17.4 cfs , therefore go to Step 6.
Step 6: $\quad R_{e}=\frac{\sqrt{g d S} D_{50}}{v}=185117=1.85 * 10^{5}$
Note: The " d " used here is $d_{a}+$ minimum freeboard of 0.5 '

From Figure 7.27-4:

$$
\begin{aligned}
\mathrm{SF} & =1.45 \\
\mathrm{~F}^{*} & =0.14
\end{aligned}
$$

From Figure 7.27-4 interpolation or chart below:

$$
\begin{aligned}
& \mathrm{SF}=\left(\left(\mathrm{R}_{\mathrm{e}}-40,000\right) *\left(3.125^{*} 10^{-6}\right)\right)+1 \\
&=\left(\left(1.85 * 10^{5}-40,000\right) *\left(3.125^{*} 10^{-6}\right)\right)+1=1.45 \\
& \mathrm{~F}^{*}=\left(\left(\mathrm{R}_{\mathrm{e}}-40000\right) *\left(6.4375^{*} 10^{-7}\right)\right)+0.047 \\
&=\left(\left(1.85 * 10^{5}-40000\right) *\left(6.4375^{*} 10^{-7}\right)\right)+0.047=0.14
\end{aligned}
$$

Step 7: \quad Since slope is between 5% and 10%, use both Equation 7.27-11 and Equation 7.27-12 and choose the larger outcome.

Equation 7.27-11:
$D_{50} \geq \frac{S F d S}{F^{*}\left(\frac{Y_{S}}{\gamma}-1\right)}=0.64 \mathrm{ft}$

$$
\begin{aligned}
& d=d_{a}+\text { minimum freeboard of } 0.5 \\
& \gamma_{\mathrm{s}}=\text { specific weight of rock was assumed to be } 165 \mathrm{lb} / \mathrm{ft}^{3} \\
& \gamma=\text { specific weight of water, } 62.4 \mathrm{lb} / \mathrm{ft} 3
\end{aligned}
$$

Equation 7.27-12:
$D_{50} \geq \frac{S F d S \Delta}{F^{*}\left(\frac{\gamma_{S}}{\gamma}-1\right)}=0.82 \mathrm{ft}$
$\tau_{s}=\gamma d_{a} S_{o}=3.81 \mathrm{lb} / \mathrm{ft}^{2}$
$\eta=\frac{\tau_{s}}{F^{*}\left(\gamma_{s}-\gamma\right) D_{50}}=0.211$

Note: The D_{50} used here is the trial $\mathrm{D}_{50}\left(1.25^{\prime}\right)$.
$\beta=\tan ^{-1}\left(\frac{\cos \alpha}{\frac{2 \sin \theta}{\eta \tan \phi}+\sin \alpha}\right)=16.33^{\circ}$
$\alpha=\tan ^{-1}(S)=\tan ^{-1}(0.08)=4.57^{\circ}$
$\theta=\tan ^{-1}(1 / Z)=\tan ^{-1}(1 / 3)=18.44^{\circ}$
$\varphi=42^{\circ}$ (From Figure 7.27-5 using the trial D_{50} size (1.25') and Very Angular)
$\Delta=\frac{K_{1}(1+\sin (\alpha+\beta)) \tan \phi}{2(\cos \theta \tan \phi-S F \sin \theta \cos \beta)}=1.284$
$\mathrm{K}_{1}=0.066 \mathrm{Z}+0.67=0.066(3)+0.67=0.868$
Note: $\mathrm{K}_{1}=.77(\mathrm{Z} \leq 1.5)$

$$
\begin{aligned}
& =0.066 \mathrm{Z}+0.67(1.5<\mathrm{Z}<5) \\
& =1.0(\mathrm{Z} \geq 5)
\end{aligned}
$$

Therefore the required D_{50} size is 0.82 ft .
Step 8: \quad Compare the required D_{50} to the trial size selected in Step 2. If the trial size is smaller than the required size, it is unacceptable for the design. Repeat the procedure from Step 2, selecting a larger trial size. If the trial size is larger than the required D_{50}, then the design is acceptable. However, if the required D_{50} is sufficiently smaller than the trial size, the procedure may be repeated from Step 2 with a smaller, more costeffective stone size.

In the design example, the trial D_{50} is larger than the required D_{50} therefore the design is acceptable. However since it is significantly larger than the required D_{50}, return to Step 2 using the previous iteration's required D_{50} of 0.82 ft as the new trial D_{50}.

Step 2(2): \quad Trial $\mathrm{D}_{50}=0.82^{\prime}$ (Very Angular)

Step 3(4):

$\mathrm{d}_{\mathrm{i}}=1.00 \mathrm{ft}$	$A_{a}=B d+Z d^{2}=4.27 \mathrm{sq} \mathrm{ft}$
$A=B d+Z d^{2}=7.00 \mathrm{sq} \mathrm{ft}$	$T_{a}=B+2 d Z=8.20 \mathrm{ft}$
$T=B+2 d Z=10.00 \mathrm{ft}$	$R a=\frac{b d+Z d^{2}}{b+2 d \sqrt{Z^{2}+1}}=0.51 \mathrm{ft}$
$R=\frac{b d+Z d^{2}}{b+2 d \sqrt{Z^{2}+1}}=0.68 \mathrm{ft}$	

$\mathrm{d}_{\mathrm{a}}=\mathrm{A} / \mathrm{T}=0.70 \mathrm{ft}$
Step 4(4):
$\mathrm{d}_{\mathrm{a}} / \mathrm{D}_{50}=0.85 \leq 1.5$ therefore use Equation 7.27-4
$n=\frac{\alpha d_{a}^{1 / 6}}{\sqrt{g} f(F r) f(R E G) f(C G)}=0.065$
$b=1.14\left(\frac{D_{50}}{T_{a}}\right)^{0.453}\left(\frac{d_{a}}{D_{50}}\right)^{0.814}=0.353$
$v=Q / A_{a}=4.075 \mathrm{ft} / \mathrm{sec}$
$f(R E G)=3.434\left(\frac{T_{a}}{D_{50}}\right)^{0.492} b^{1.025\left(\frac{T_{a}}{D_{50}}\right)^{0.118}}=10.29$
$F r=\frac{v}{\sqrt{g d_{a}}}=0.858$
$f(F r)=\left(\frac{0.28 F r}{b}\right)^{\log (0.755 / b)}=0.881$
$f(C G)=\left(\frac{T_{a}}{d_{a}}\right)^{-b}=0.419$

Step 5(4): $\quad Q=\frac{1.49}{n} A_{a} R_{a}{ }^{\frac{2}{3}} S_{f^{\frac{1}{2}}}=17.56 \mathrm{cfs}$
This flow is within 5% of 17.4 cfs ; therefore go to Step 6.

Step 6:
$R_{e}=\frac{\sqrt{g d S} D_{50}}{v}=118000=1.18 * 10^{5}$
Note: The " d " that is used here is $d_{a}+$ minimum freeboard of 0.5 '
From Figure 7.27-4:

$$
\begin{aligned}
\mathrm{SF} & =1.24 \\
\mathrm{~F}^{*} & =0.098
\end{aligned}
$$

From Figure 7.27-4 interpolation:

$$
\begin{aligned}
& \mathrm{SF}=\left(\left(\mathrm{R}_{\mathrm{e}}-40,000\right) *\left(3.125^{*} 10^{-6}\right)\right)+1 \\
& \quad=\left(\left(1.18 * 10^{5}-40,000\right) *\left(3.125^{*} 10^{-6}\right)\right)+1=1.245 \\
& \mathrm{~F}^{*}=\left(\left(\mathrm{R}_{\mathrm{e}}-40000\right) *\left(6.4375^{*} 10^{-7}\right)\right)+0.047 \\
& \quad=\left(\left(1.18 * 10^{5}-40000\right) *\left(6.4375^{*} 10^{-7}\right)\right)+0.047=0.098
\end{aligned}
$$

Reynolds Number

Reynolds Number, $\mathbf{R}_{\mathbf{e}}$	Shield's Parameter, \mathbf{F}^{*}	Factor of Safety, SF
$\leq 4 \times 10^{4}$	0.047	1
$4 \times 10^{4}<\mathrm{R}_{\mathrm{e}}<2 \times 10^{5}$	Linear Interpolation	Linear Interpolation
$\geq 2 \times 10^{5}$	0.15	1.5

Step 7: \quad Since slope is between 5\% and 10% we must use both Equation 7.27-12 and Equation 7.27-13 and choose the larger outcome.

Equation 7.27-11:

$$
\begin{aligned}
D_{50} \geq & \frac{S F d S}{F^{*}\left(\frac{\gamma_{S}}{\gamma}-1\right)}=0.75 \mathrm{ft} \\
& \mathrm{~d}=\mathrm{d}_{\mathrm{a}}+\text { minimum freeboard of } 0.5 \\
& \gamma_{\mathrm{s}}=\text { specific weight of rock was assumed to be } 165 \mathrm{lb} / \mathrm{ft}^{3} \\
& \gamma=\text { specific weight of water, } 62.4 \mathrm{lb} / \mathrm{ft} 3
\end{aligned}
$$

Equation 7.27-12:

$$
\begin{aligned}
D_{50} \geq & \frac{S F d S \Delta}{F^{*}\left(\frac{\gamma_{S}}{\gamma}-1\right)}=0.90 \mathrm{ft} \\
& \quad \tau_{s}=\gamma d_{a} S_{o}=3.49 \mathrm{lb} / \mathrm{ft}^{2} \\
& \eta=\frac{\tau_{s}}{F^{*}\left(\gamma_{s}-\gamma\right) D_{50}}=0.426
\end{aligned}
$$

Note: The D_{50} that is used here is the trial $\mathrm{D}_{50}\left(0.82^{\prime}\right)$.

$$
\begin{aligned}
\beta=\tan ^{-1} & \left(\frac{\cos \alpha}{\frac{2 \sin \theta}{\eta \tan \phi}+\sin \alpha}\right)=29.55^{\circ} \\
\alpha & =\tan ^{-1}(S)=\tan ^{-1}(0.08)=4.57^{\circ} \\
\theta & =\tan ^{-1}(1 / Z)=\tan ^{-1}(1 / 3)=18.44^{\circ}
\end{aligned}
$$

$\varphi=41.5^{\circ}$ (From Figure 7.27-5 using the trial D_{50} size (1.25’) and Very Angular)

$$
\begin{aligned}
& \Delta=\frac{K_{1}(1+\sin (\alpha+\beta)) \tan \phi}{2(\cos \theta \tan \phi-S F \sin \theta \cos \beta)}=1.21 \\
& \quad \mathrm{~K}_{1}=0.066 \mathrm{Z}+0.67=0.066(3)+0.67=0.868 \\
& \quad \begin{aligned}
& \text { Note: } \mathrm{K}_{1}=.77(\mathrm{Z} \leq 1.5) \\
& \quad=0.066 \mathrm{Z}+0.67(1.5<\mathrm{Z}<5) \\
& \quad=1.0(\mathrm{Z} \geq 5)
\end{aligned}
\end{aligned}
$$

Therefore the required D_{50} size is 0.90 ft .
Step 8: The trial D_{50} is smaller than the required D_{50} therefore the design is unacceptable. Return to Step 2 and use the previous iteration's required D_{50} of 0.90 ft as the new trial D_{50}.

Step 2(5): \quad Trial $D_{50}=0.90^{\prime}$ (Very Angular)
Step 3(5):

$$
\begin{array}{ll}
\mathrm{d}_{\mathrm{i}}=1.00 \mathrm{ft} & \mathrm{~d}_{\mathrm{a}}=\mathrm{A} / \mathrm{T}=0.70 \mathrm{ft} \\
A=B d+Z d^{2}=7.00 \mathrm{sq} \mathrm{ft} & A_{a}=B d+Z d^{2}=4.27 \mathrm{sq} \mathrm{ft} \\
T=B+2 d Z=10.00 \mathrm{ft} & T_{a}=B+2 d Z=8.20 \mathrm{ft} \\
R=\frac{b d+Z d^{2}}{b+2 d \sqrt{Z^{2}+1}}=0.68 \mathrm{ft} & R a=\frac{b d+Z d^{2}}{b+2 d \sqrt{Z^{2}+1}}=0.51 \mathrm{ft}
\end{array}
$$

Step 4(5): $\quad d_{a} / D_{50}=0.78 \leq 1.5$ therefore use Equation 7.27-4

$$
\begin{aligned}
& n=\frac{\alpha d_{a}{ }^{1 / 6}}{\sqrt{g} f(F r) f(R E G) f(C G)}=0.068 \\
& b=1.14\left(\frac{D_{50}}{T_{a}}\right)^{0.453}\left(\frac{d_{a}}{D_{50}}\right)^{0.814}=0.341 \\
& v=Q / A_{a}=4.08 \mathrm{ft} / \mathrm{sec} \\
& F r=\frac{v}{\sqrt{g d_{a}}}=0.858 \\
& f(F r)=\left(\frac{0.28 F r}{b}\right)^{\log (0.755 / b)}=0.886 \\
& f(R E G)=3.434\left(\frac{T_{a}}{D_{50}}\right)^{0.492} b^{1.025\left(\frac{T a}{D_{50}}\right)^{0.118}=9.540} \\
& f(C G)=\left(\frac{T_{a}}{d_{a}}\right)^{-b}=0.432
\end{aligned}
$$

Step 5(5):

$$
Q=\frac{1.49}{n} A_{a} R_{a}{ }^{\frac{2}{3}} S_{f^{\frac{1}{2}}}=16.86 \mathrm{cfs}
$$

This flow is within 5% of 17.4 cfs , therefore go to Step 6 .

Step 6(5):

$$
R_{e}=\frac{\sqrt{g d S} D_{50}}{v}=130000=1.30^{*} 10^{5}
$$

Note: The " d " that is used here is $d_{a}+$ minimum freeboard of 0.5 '
From Figure 7.27-4:

$$
\begin{aligned}
& \mathrm{SF}=1.28 \\
& \mathrm{~F}^{*}=0.105
\end{aligned}
$$

From Figure 7.27-4 interpolation:

$$
\begin{aligned}
& \mathrm{SF}=\left(\left(\mathrm{R}_{\mathrm{e}}-40,000\right) *\left(3.125^{*} 10^{-6}\right)\right)+1 \\
&=\left(\left(1.30^{*} 10^{5}-40,000\right) *\left(3.125^{*} 10^{-6}\right)\right)+1=1.28 \\
& \mathrm{~F}^{*}=\left(\left(\mathrm{R}_{\mathrm{e}}-40000\right) *\left(6.4375^{*} 10^{-7}\right)\right)+0.047 \\
&=\left(\left(1.30^{*} 10^{5}-40000\right) *\left(6.4375 * 10^{-7}\right)\right)+0.047=0.105
\end{aligned}
$$

Step 7(5): Since slope is between 5\% and 10\%,w use both Equation 7.27-11 and Equation 27-12 and choose the larger outcome.

Equation 7.27-11:

$$
\begin{aligned}
D_{50} \geq \frac{S F d S}{F^{*}\left(\frac{\gamma_{s}}{\gamma}-1\right)} & =0.71 \mathrm{ft} \\
& =\mathrm{d}_{\mathrm{a}}+\text { minimum freeboard of } 0.5, \\
\gamma_{\mathrm{s}} & =\text { specific weight of rock was assumed to be } 165 \mathrm{lb} / \mathrm{ft}^{3}
\end{aligned}
$$

$\gamma=$ specific weight of water, $62.4 \mathrm{lb} / \mathrm{ft} 3$
Equation 7.27-12:
$D_{50} \geq \frac{S F d S \Delta}{F^{*}\left(\frac{\gamma_{S}}{\gamma}-1\right)}=0.86 \mathrm{ft}$
$\tau_{s}=\gamma d_{a} S_{o}=3.494$
$\eta=\frac{\tau_{s}}{F^{*}\left(\gamma_{s}-\gamma\right) D_{50}}=0.361$
Note: The D_{50} that is used here is the trial $\mathrm{D}_{50}\left(0.90^{\prime}\right)$.
$\beta=\tan ^{-1}\left(\frac{\cos \alpha}{\frac{2 \sin \theta}{\eta \tan \phi}+\sin \alpha}\right)=26.03^{\circ}$
$\alpha=\tan ^{-1}(S)=\tan ^{-1}(0.08)=4.57^{\circ}$
$\theta=\tan ^{-1}(1 / \mathrm{Z})=\tan ^{-1}(1 / 3)=18.44^{\circ}$
$\varphi=41.8^{\circ}$ (From Figure 7.27-5 using the trial D_{50} size (1.25’) and Very Angular)

$$
\Delta=\frac{K_{1}(1+\sin (\alpha+\beta)) \tan \phi}{2(\cos \theta \tan \phi-S F \sin \theta \cos \beta)}=1.21
$$

$$
\mathrm{K} 1=0.066 \mathrm{Z}+0.67=0.066(3)+0.67=0.868
$$

Note: $\mathrm{K}_{1}=.77(\mathrm{Z} \leq 1.5)$

$$
\begin{aligned}
& =0.066 \mathrm{Z}+0.67(1.5<\mathrm{Z}<5) \\
& =1.0(\mathrm{Z} \geq 5)
\end{aligned}
$$

Therefore the required D_{50} size is $\mathbf{0 . 8 6 f t}$.

Step 8(5): \quad Specify Riprap with $D_{50}=12 "=1$ for this channel.

The trial D_{50} is slightly larger than the required D_{50} which is preferable. Ideally the trial D_{50} will be no more than 10% larger than the required D_{50}. One can then use this D_{50} size to specify the appropriate common riprap size, which in this case would be riprap with a D_{50} of 12 " or 1'. The use of Excel is strongly recommended for performing these iterations.

