AEROBIC DIGESTION OF SLUDGE

- Introduction to Sludge Treatment
- Sludge Stabilization
- Process Fundamentals
- Aerobic Digestion Operating Conditions
- Use of Thickeners-Clarifiers
- ATAD Process
- Advantages & Disadvantages of Aerobic Digestion

What is a Sludge?

A sludge is a liquid that contains enough solids that it can no longer be considered to have the same physical or hydraulic properties of water.

Chemical sludges:

water treatment metal plating industry

Biological Sludges:

primary sludge secondary sludge tertiary sludge

Why are sludges an environmental problem?

Sidestreams are produced by every physical/chemical/biological reactor that is designed to remove a specific contaminant. This sidestream is typically concentrated to a sludge which is high in contaminant concentration or biological biomass produced by the consumption of the contaminant.

- May contain high levels of contamination
- May contain high levels of biomass and pathogens
- Contain high levels of liquids that can not be properly disposed in a sanitary landfill.
- Too high in volume

Sludge Treatment & Disposal Options

FIGURE 5-31 Basic sludge handling alternatives.

Ref: Davis, Cornwell, 1998, Intro to Environmental Engineering

Goals of Sludge Treatment

- Significantly reduce the volume to a level that will not cause any "free liquid" production after final disposal. <u>Remove water</u>.
- Stabilization/Conditioning to increase the biostability and reduce health hazards associated with heavy metals and/or pathogens. <u>Satisfy 503</u> regulations.
- Ultimate Disposal: Place the sludge in a location that is safe to the environment and/or has beneficial uses to the environment.

Sludge Stabilization

Why stabilize ?

- Reduce pathogen levels prior to final disposal
- Vector attraction reduction
- Increase the biostability of the sludge prior to final disposal

Processes for Stabilization

- Aerobic Sludge Digestion
- Anaerobic Sludge Digestion
- Lime Stabilization

TN Plant Optimization Program (TNPOP)

Aerobic Digestion: Process Fundamentals

organic + $O_2 \longrightarrow New + Energy + CO_2 + H_2O + Other$ matter cells for cells end products

$$C_5H_7NO_2 + 5O_2 \longrightarrow 5CO_2 + 2H_2O + NH_3$$

biological
cells

Microbial Growth Phases

Ref: Brock, Madigan, et al, Biology of Microorganisms TN Plant Optimization Program (TNPOP) Aer

Aerobic Digestion of Sludge Dr. Larry Moore

Wastewater Microbiology

Temperature Classifications

Aerobic Sludge Digestion

$C_5H_7O_2N + 5O_2 \rightarrow 5CO_2 + 2H_2O + NH_3$

$NH_3 + 2O_2 \rightarrow NO_3 + H_2O + H^+$

$\mathrm{C_5H_7O_2N} + \mathrm{7O_2} \rightarrow \mathrm{NO_3} + \mathrm{5CO_2} + \mathrm{3H_2O} + \mathrm{H^+}$

Theoretical oxygen requirements = 2.0 lb O_2 /lb biomass

Aerobic Digestion Design

- SRT at 20°C = 40 days; SRT at 15°C = 60 days (503)
- Volatile solids loading = 0.1 to 0.3 lb/(ft3-day)
- Oxygen requirements = 2.3 lb O_2 /lb VSS destroyed
- Energy requirements for mixing = 100 to 200 hp/mil gal
- Dissolved oxygen residual = 1 to 2 mg/L
- Reduction of VSS = 38 to 50%

How You Operate Depends on...

- If treating sludge for direct land application
- If treating sludge for subsequent dewatering
- Type of dewatering equipment
 - Belt Filter Press
 - Centrifuge
 - Recessed plate pressure filter
 - Screw Press
 - Sludge drying beds
 - If pursuing Class A
- TN Plant Optimization Program (TNPOP) hauling sludge away TN Plant Optimization Program (TNPOP)

Other Factors to Consider

- Your influent sludge characteristics % Total SS % VSS
- Frequency of wasting
- If you are chemically treating influent or effluent
- Given digester design that you have
 - Batch/continuous
 - Single or multi-tank & tank config/volume
 - Type of aeration
 - Amount of O₂ provided (e.g., blower size)
 - Level of automation/instrumentation

To Meet 40 CFR 503

- Pathogen Reduction Alternatives (Class B):
 - MCRT of 60 days @ 15 C or 40 days @ 20°C
 OR
 - Pathogen \leq 2,000,000 CFU or MPN per g TS
- Vector Attraction Reduction Alternatives:
 - VSS Reduction ≥ 38%
 OR
 SOUR ≤ 1.5 mg O₂ per hr per g TS @ 20°C

Aerobic Sludge Digestion

Aerobic Sludge Digestion: Scenario #1

- Activated sludge SRT = 10 days
- Desired VSS destruction in digester = 45%
- Design temperature = 20°C
- From previous figure, °C x days = 1100
- Required digester detention time = 55 days
- Oxygen requirements = 2.3 lb O_2 /lb VSS destroyed

Aerobic Sludge Digestion: Scenario #2

- Activated sludge SRT = 40 days
- Desired VSS destruction in digester = 45%
- Design temperature = 20°C
- From previous figure, °C x days = 1100
- Required digester detention time = 55 days
- Thus, only an additional 15 days of digestion time is needed; additional VSS destruction ≈ 3%; oxygen requirements in digester are small.

Reduce run time of digester aeration equipment

TN Plant Optimization Program (TNPOP)

Aerobic Digestion of Sludge Dr. Larry Moore

Anoxic Operation

Take advantage of anoxic operation, when possible

But watch out for anaerobic conditions

- Could lead to settling problems
- Nocardia-like bulking

Aerobic Sludge Digestion

- V = volume of aerobic digester, ft^3
- Q_i = influent sludge flow rate, ft³/d
- X_i = influent sludge concentration, mg/L
- X = sludge concentration in digester
- k_d = endogenous respiration rate, day⁻¹
- θ_{c} = sludge age in digester, days

Volatile Solids Reduction Depends On:

- Nature of the sludge
- Hydraulic detention time
- Solids retention time
- Operating temperature

Mixing Requirements Depend On:

- Nature of the sludge
- Solids concentration
- Sludge temperature
- Tank depth

Use of Thickeners-Clarifiers

- Usually placed downstream of digester
- Should be designed for feed sludge plus recycled sludge flow
- Should have capacity to clarify the supernatant liquor and to thicken the settled sludge

Aerobic Digester with Thickener-Clarifier

- There is a more advanced aerobic digestion process called *Autothermal Thermophilic Aerobic Digestion*
- ATAD Generally operates at 45-70+ °C (113-158+ °F) [i.e., sometimes beyond thermophilic range]
- Essentially pasteurization of sludge
- Very few of these in the U.S. Some in Europe due to stricter requirements for pathogen levels in sludge

FUCHS ATAD System

FUCHS ATAD System

More on ATAD...

- Lower HRT & Higher VSS Reductions achievable
- Robust process but way more complicated to design and operate
- Can achieve 40% VSS reduction in 4-8 days
- 440-640 kWh/Ton TS destroyed [ref: NORAM Bio Systems Inc, 2002]
 - Some European utilities are likely really concerned about their energy bills

Aerobic Digester Supernatant Quality

Turbidity Nitrate-N TKN COD PO₄-P BOD₅ TSS pH

120 NTU 40 mg/L 100 to 1300 mg/L 100 to 25,000 mg/L 10 to 900 mg/L 10 to 350 mg/L 100 to 40,000 mg/L 5.7 to 8.0

Advantages of Aerobic Sludge Digestion

- Capital costs lower than anaerobic (Q < 5 mgd)</p>
- Relatively easy to operate
- Does not generate nuisance odors
- Produces supernatant low in BOD, TSS, & NH₃-N
- Reduces quantity of grease in the sludge mass
- Reduces pathogens to low levels

Other Advantages

- Can accept a wide range of waste types with less chance of toxicity (i.e., generally less sensitive to toxicants)
- No gas issue (safer..?)
- No over-pressure concerns
- Likely best without feedstock of high strength organic waste (works good with low substrate levels, too)

Disadvantages of Aerobic Sludge Digestion

- Can produce a digested sludge with poor dewatering characteristics
- Has high power costs to supply O₂
- Significantly influenced by temperature, location, and type of tank design
- Produces no usable by-product such as methane
- More residual sludge to handle
- Possible odors if not operated properly

Common Operating Problems

- Diffusers clogging
- Foaming
- Odors
- Insufficient pathogen control
- Grease buildup
- Digester return overflow
- Settling problems
- Aerator failure 😕