

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

> ROADWAY DESIGN DIVISION SUITE 1200 JAMES K. POLK BUILDING 505 DEADERICK STREET NASHVILLE, TENNESSEE 37243-3848 (615) 741-2221

CLAY BRIGHT COMMISSIONER BILL LEE GOVERNOR

INSTRUCTIONAL BULLETIN NO. 19-04

Regarding New Standard Drawings for RD11s And Existing RD01 Drawings

Effective August 9, 2019 letting (May 29, 2019 Turn-in), the following standard drawings have been developed to confirm AASHTO, "A policy on Geometric Design of Highways" and Streets, 6th Edition, 2011.

The Roadway Design CADD unit <u>will not make changes to existing criteria files</u> to accommodate changes in cross slope for third, fourth and additional travel lanes as shown in Roadway Standard Drawings **RD11-SE-1**, **RD11-TS-2A**, **RD11-TS-2B**, **RD11-TS-3A**, **RD11-TS-3B**, **RD11-TS-3C**, **RD11-TS-5F**, **RD11-TS-5A** and **RD11-TS-5B**. Designers shall refer to the Geopak Road Course Guide, Exercise 13, Page 13-7, Step 5 and manually input the slopes for additional lanes as specified in the listed Standard Drawings.

Changes in slopes for additional travel lanes as shown in Roadway Standard Drawings RD11-SE-1, RD11-TS-2A, RD11-TS-2B, RD11-TS-3A, RD11-TS-3B, RD11-TS-3C, RD11-TS-5, RD11-TS-5A and RD11-TS-5B does not apply to resurfacing projects.

Also, Chapter 5, Index of Standard Drawings, of the Roadway Design Guidelines has been revised to incorporate these changes.

New Standard Drawings:

DRAWING NUMBER	REVISION DATE	DESCRIPTION
RD11-LR-1 ⁽¹⁾		MINIMUM RUNOFF LENGTHS (L _R) FOR URBAN HIGHWAYS
RD11-LR-2 ⁽¹⁾		MINIMUM RUNOFF LENGTHS (L _R) FOR RURAL HIGHWAYS
RD11-S-11 ⁽¹⁾		DESIGN AND CONSTRUCTION DETAILS FOR ROADSIDE SLOPE DEVELOPMENT
RD11-S-11A ⁽¹⁾		ROADSIDE DITCH DETAILS FOR DESIGN AND CONSTRUCTION

DRAWING NUMBER	REVISION DATE	DESCRIPTION
RD11-S-11B ⁽²⁾		DESIGN AND CONSTRUCTION DETAILS FOR ROCK CUT SLOPE AND CATCHMENT (Replaced RD01-S-11B)
RD11-SA-1 ⁽¹⁾		SAFETY APPROACH TO UNDERPASSES GRADING DESIGN AND SLOPE PROTECTION
RD11-SD-1 ⁽¹⁾		INTERSECTION SIGHT DISTANCE DESIGN AND GENERAL NOTES
RD11-SD-2 ⁽¹⁾		INTERSECTION SIGHT DISTANCE LANDSCAPE AND OBSTRUCTION
RD11-SD-3 ⁽¹⁾		INTERSECTION SIGHT DISTANCE 2-LANE ROADWAYS
RD11-SD-4 ⁽¹⁾		INTERSECTION SIGHT DISTANCE 4-LANE AND 5-LANE UNDIVIDED ROADWAYS
RD11-SD-5 ⁽¹⁾		INTERSECTION SIGHT DISTANCE 4-LANE DIVIDED HIGHWAYS
RD11-SD-6 ⁽¹⁾		INTERSECTION SIGHT DISTANCE 6-LANE DIVIDED HIGHWAYS
RD11-SD-7 ⁽²⁾		INTERSECTION SIGHT DISTANCE FOR PASSIVE RAILROAD HIGHWAY GRADE CROSSINGS
RD11-SE-1 ⁽²⁾		TRANSITION AND CROSS SLOPE DETAILS
RD11-SE-2 ⁽²⁾		SUPERELEVATION TRANSITION DETAILS FOR UNDIVIDED ROADWAYS
RD11-SE-2A ⁽²⁾		SUPERELEVATION TRANSITION SECTIONS FOR UNDIVIDED ROADWAYS
RD11-SE-3 ⁽²⁾		SUPERELEVATION TRANSITION DETAILS FOR DIVIDED ROADWAYS
RD11-SE-3A ⁽²⁾		SUPERELEVATION TRANSITION SECTIONS FOR DIVIDED ROADWAYS
RD11-TS-1 ⁽¹⁾		DESIGN STANDARDS FOR LOW-VOLUME ROADS
RD11-TS-1A ⁽²⁾		DESIGN STANDARDS FOR LOCAL ROADS AND STREETS
RD11-TS-2 ⁽¹⁾		DESIGN STANDARDS FOR COLLECTORS, 2-LANE ROADS AND STREETS

DRAWING NUMBER	REVISION DATE	DESCRIPTION
RD11-TS-2A ⁽²⁾		DESIGN STANDARDS FOR COLLECTOR HIGHWAYS WITH DEPRESSED MEDIAN (4 AND 6 LANE)
RD11-TS-2B ⁽²⁾		DESIGN STANDARDS FOR COLLECTOR HIGHWAYS WITH FLUSH MEDIAN (4 AND 6 LANE)
RD11-TS-3 ⁽²⁾		DESIGN STANDARD FOR ARTERIAL HIGHWAYS (2-LANE)
RD11-TS-3A ⁽¹⁾		DESIGN STANDARDS FOR ARTERIAL HIGHWAYS WITH DEPRESSED MEDIAN (4 AND 6 LANE)
RD11-TS 3B ⁽²⁾		DESIGN STANDARDS FOR ARTERIAL HIGHWAYS WITH FLUSH MEDIAN (4 AND 6 LANE)
RD11-TS-3C ⁽²⁾		DESIGN STANDARDS FOR ARTERIALS WITH INDEPENDENT ROADWAYS (4 AND 6 LANE)
RD11-TS-4 ⁽²⁾		DESIGN STANDARDS FOR ARTERIAL AND FREEWAY RAMPS (1, 2 AND 3 LANE)
RD11-TS-5 ⁽¹⁾		DESIGN STANDARDS FOR FREEWAYS WITH DEPRESSED MEDIAN (4 AND 6 LANE)
RD11-TS-5A ⁽²⁾		DESIGN STANDARDS FOR FREEWAYS WITH INDEPENDENT ROADWAYS (4 AND 6 LANE)
RD11-TS-5B ⁽²⁾		DESIGN STANDARDS FOR FREEWAYS WITH MEDIAN BARRIER (4 AND 6 LANE)
RD11-TS-5W ⁽¹⁾		TYPICAL DETAIL FOR INSIDE LANE WIDENING OF FREEWAYS
RD11-TS-6 ⁽¹⁾		TYPICAL CURB & GUTTER SECTIONS WITH SHOULDERS AND WITH GRASS STRIPS
RD11-TS-6A ⁽¹⁾		TYPICAL CURB & GUTTER SECTIONS WITHOUT SHOULDERS AND WITH GRASS STRIPS
RD11-TS-6B ⁽¹⁾		TYPICAL CURB AND GUTTER SECTIONS WITH SHOULDERS AND WITHOUT GRASS STRIPS
RD11-TS-6C ⁽¹⁾		TYPICAL CURB AND GUTTER SECTIONS WITHOUT SHOULDERS AND WITHOUT GRASS STRIPS
RD11-TS-7 ⁽¹⁾		DESIGN STANDARDS 2-LANE CURB & GUTTER WITH CONTINUOUS 2-WAY LEFT-TURN LANE WITHOUT GRASS STRIPS

IB 19-04

DRAWING NUMBER	REVISION DATE	DESCRIPTION
RD11-TS-7A ⁽¹⁾		DESIGN STANDARDS 2-LANE CURB & GUTTER WITH CONTINUOUS 2-WAY LEFT-TURN LANE WITH GRASS STRIPS
RD11-TS-7B ⁽²⁾		DESIGN STANDARDS 2-LANE HIGHWAYS WITH CONTINUOUS 2-WAY LEFT-TURN LANE
RD11-TS-9 ⁽²⁾		DESIGN STANDARDS FOR SINGLE LANE URBAN AND RURAL ROUNDABOUTS
RD11-TS-10 ⁽²⁾		DESIGN STANDARDS FOR MULTI-LANE URBAN AND RURAL ROUNDABOUTS
Revised Standard	d Drawings:	
RD01-TS-6 ⁽³⁾	01-07-19	TYPICAL CURB AND GUTTER SECTIONS WITH SHOULDERS
RD01-TS-6A ⁽³⁾	01-07-19	TYPICAL CURB AND GUTTER SECTIONS WITHOUT SHOULDERS
RD01-TS-7A ⁽³⁾	01-07-19	DESIGN STANDARDS 2 LANE CURB & GUTTER WITH CONTINUOUS 2-WAY LEFT-TURN LANE
RD01-TS-9 ⁽³⁾	01-07-19	DESIGN STANDARDS FOR SINGLE LANE URBAN AND RURAL ROUNDABOUTS
RD01-TS-10 ⁽³⁾	01-07-19	DESIGN STANDARDS FOR MULTI-LANE URBAN AND RURAL ROUNDABOUTS
Note 1: F.H.W.A.	approval was given	on 01/24/19.

Note 1: F.H.W.A. approval was given on 01/24/19.

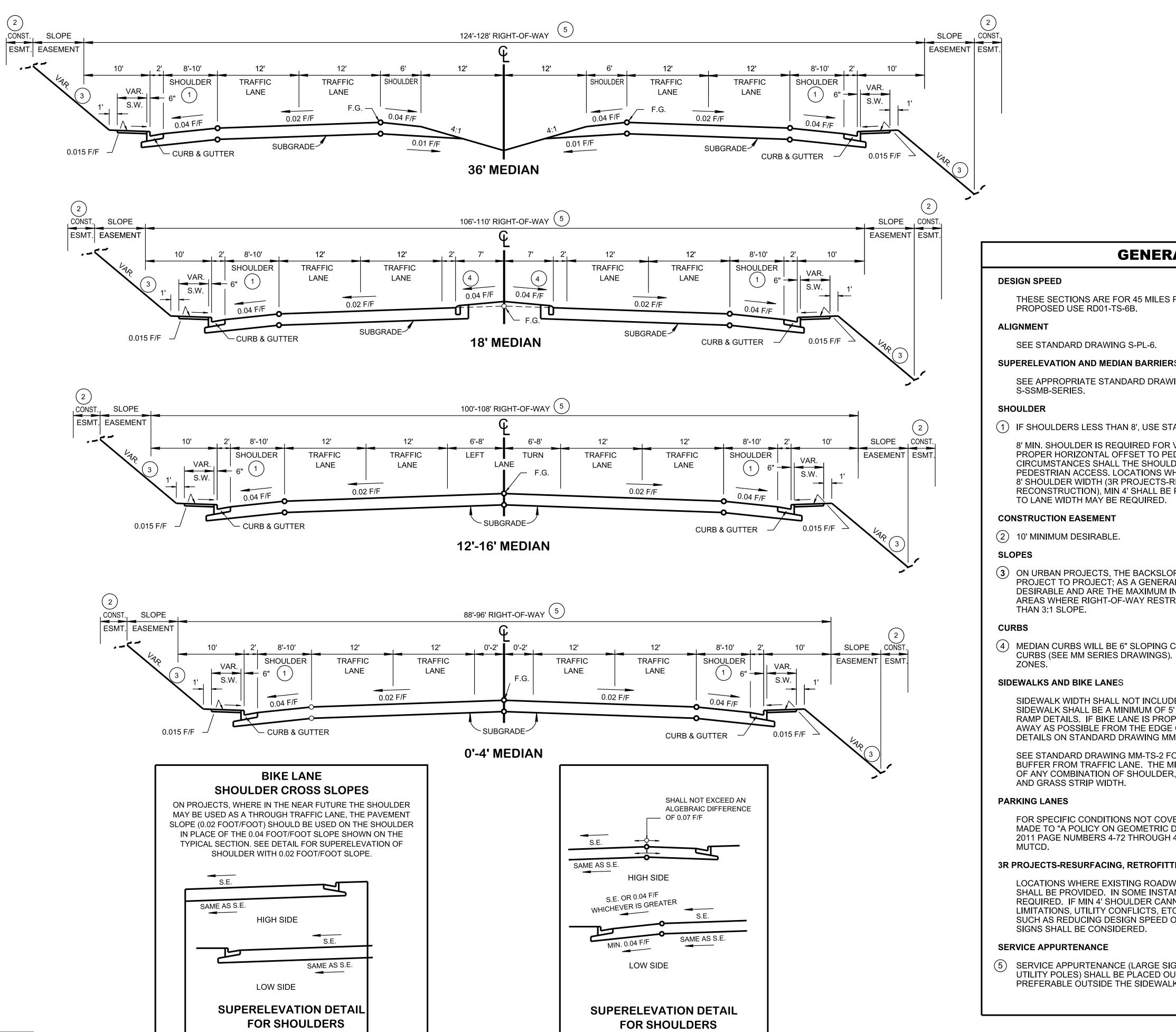
Note 2: F.H.W.A. approval was given on 02/26/19.

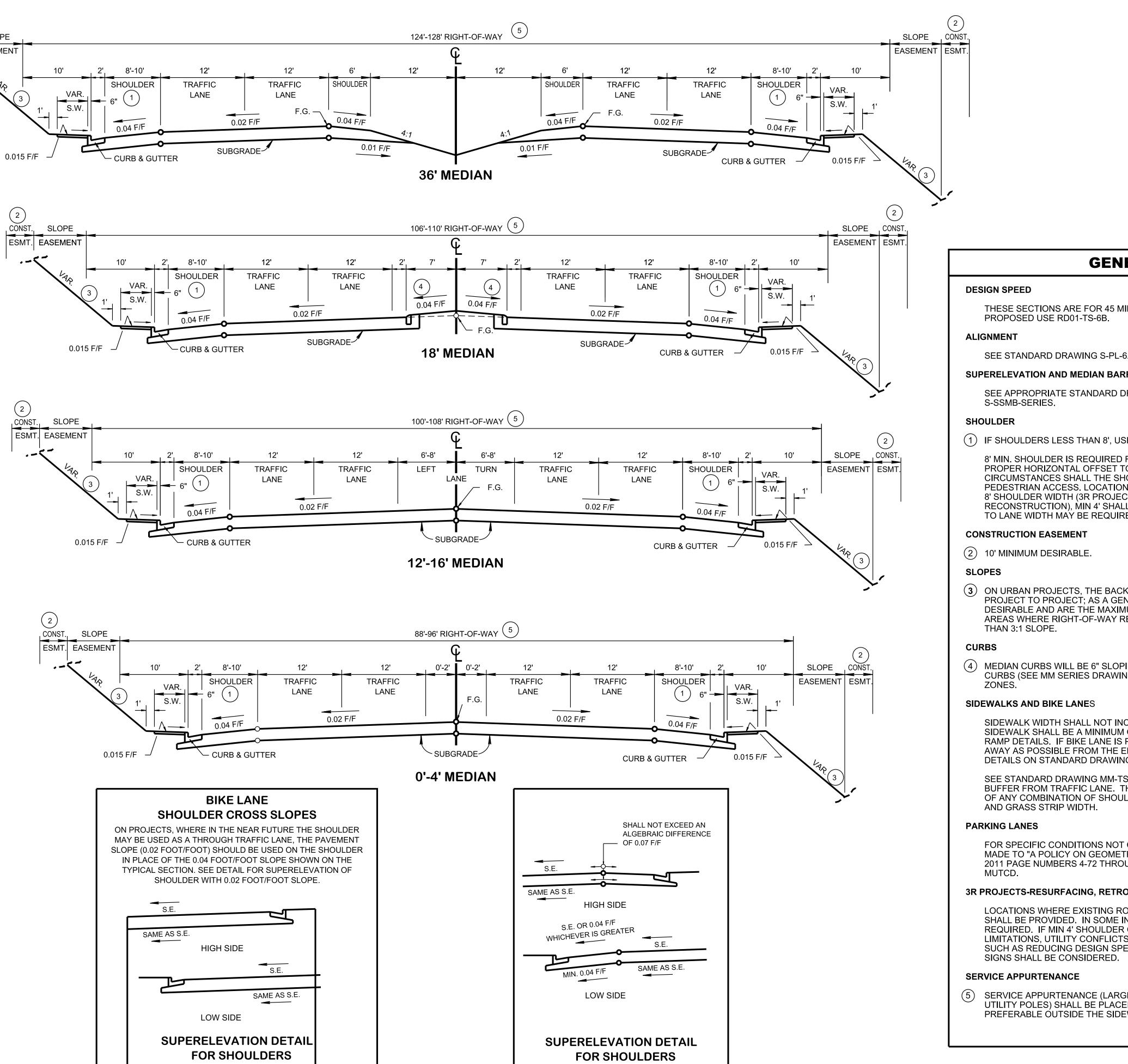
Note 3: Minor revisions, revised details and/or notes, redrew sheet.

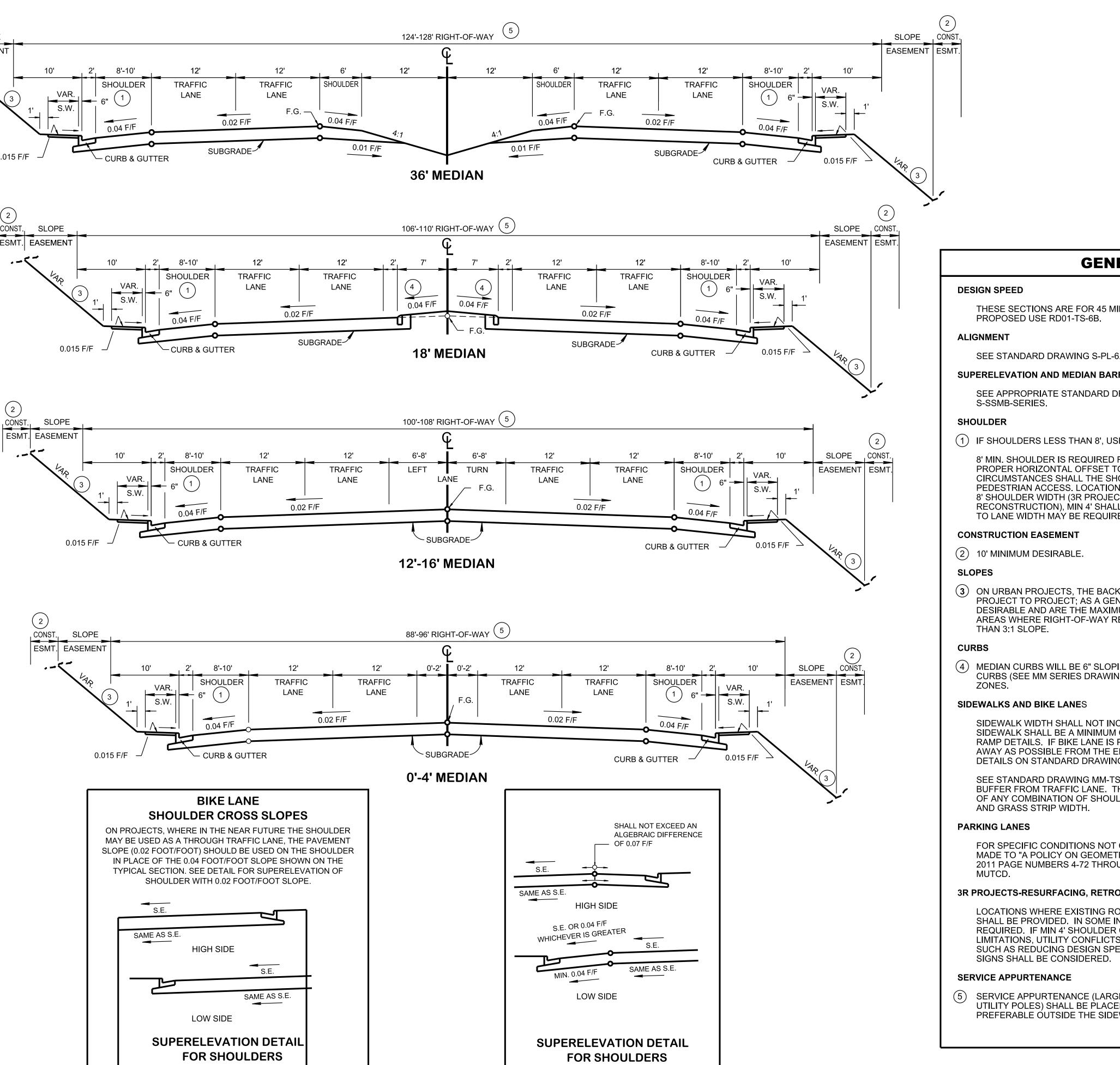
These standard drawings revised the Roadway Design Guidelines, Chapter 5, Index of Standard Drawings and are available online.

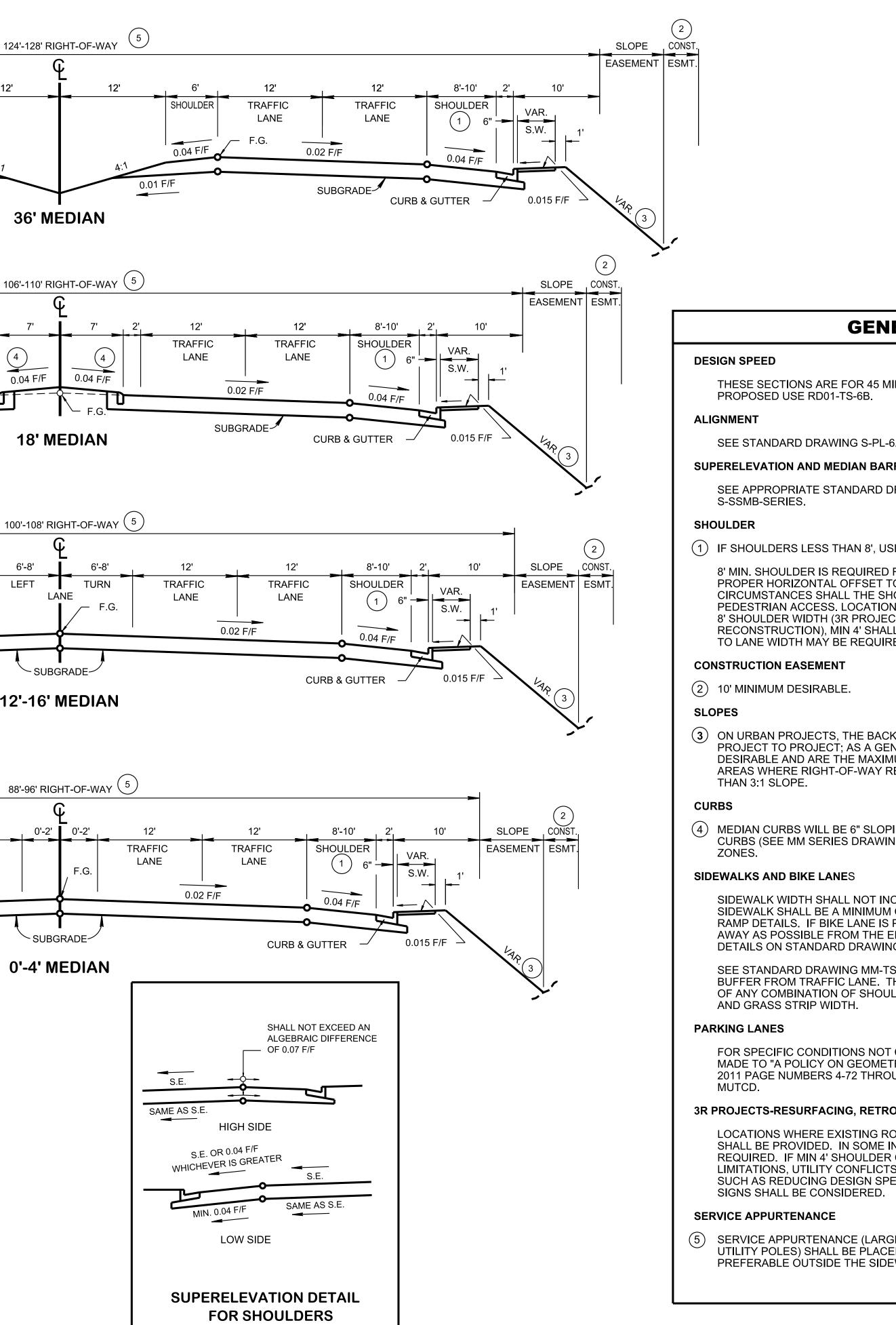
Standard Drawings:

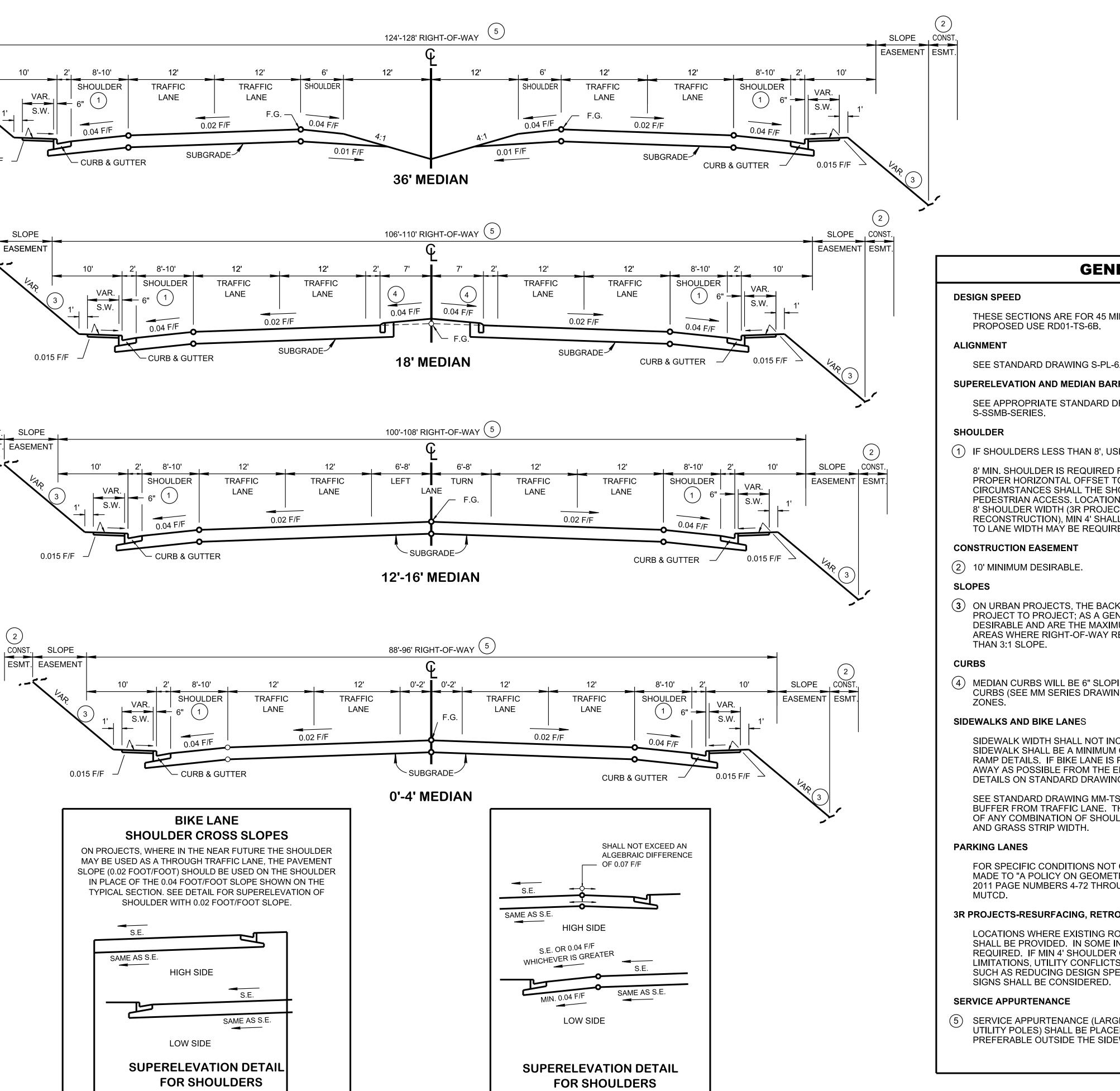
https://www.tn.gov/content/tn/tdot/roadway-design/standard-drawings-library/standard-roadway-drawings.html

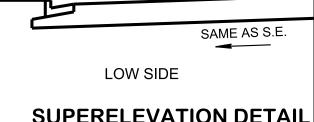

Roadway Design Guidelines:


https://www.tn.gov/content/tn/tdot/roadway-design/design-standards/design-guidelines.html


Jennifer Lloyd, PE


Civil Engineering Director Roadway Design Division


KJL:ARH:RBB:LLP February 15, 2019



σ

07

 $\overline{}$

06

-201

S6-

\RD01T5

a

Criteri

σ

Desi

рu

ത

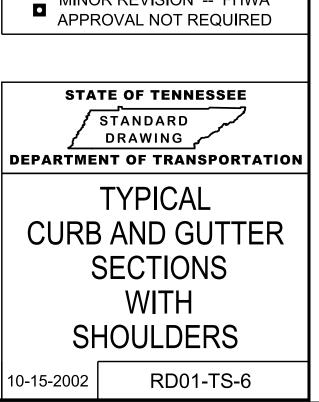
S

Secti

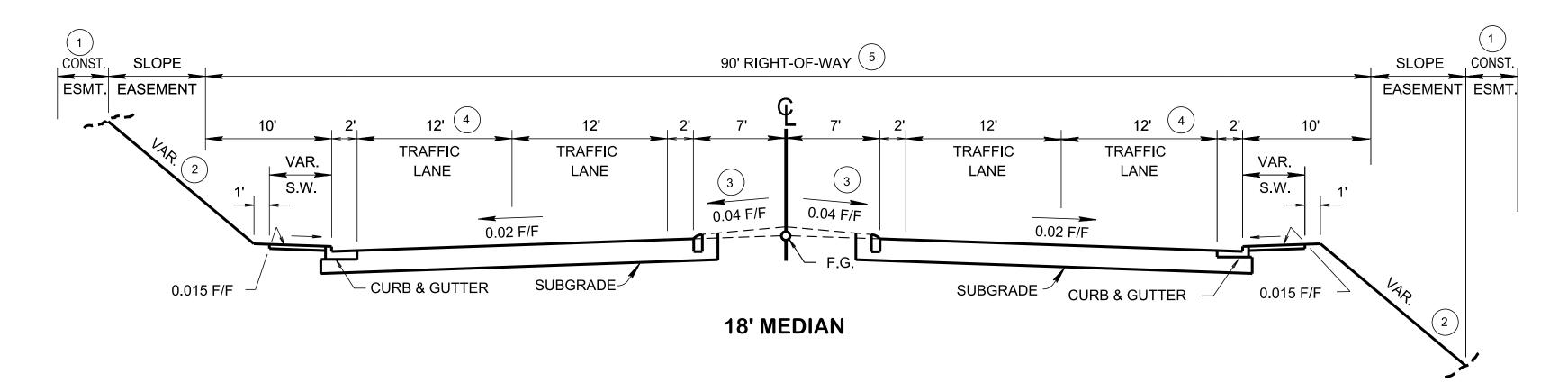
ca

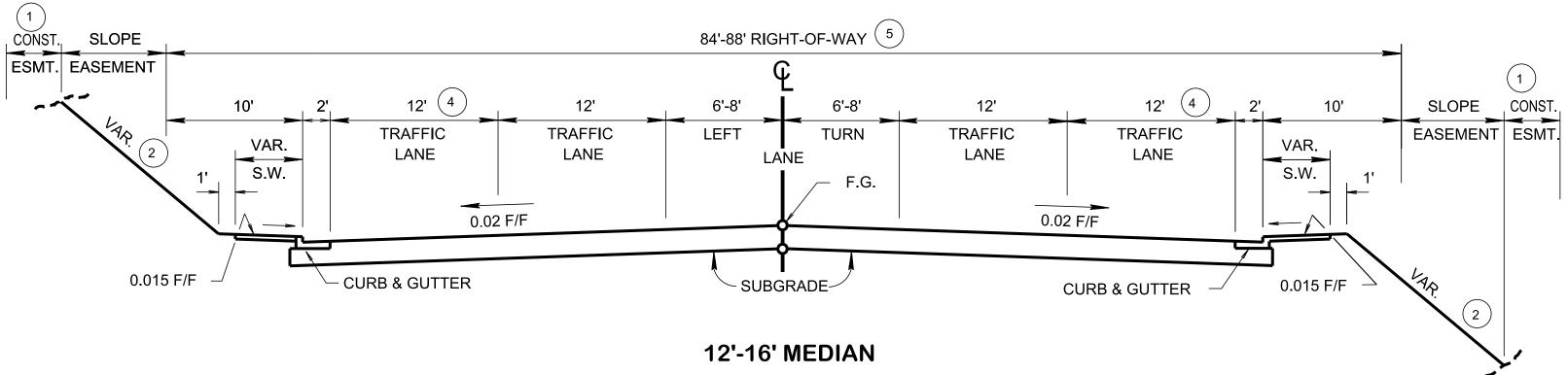
p

REV. 10-15-02: NEW SHEET. REPLACES RD-TS-6.

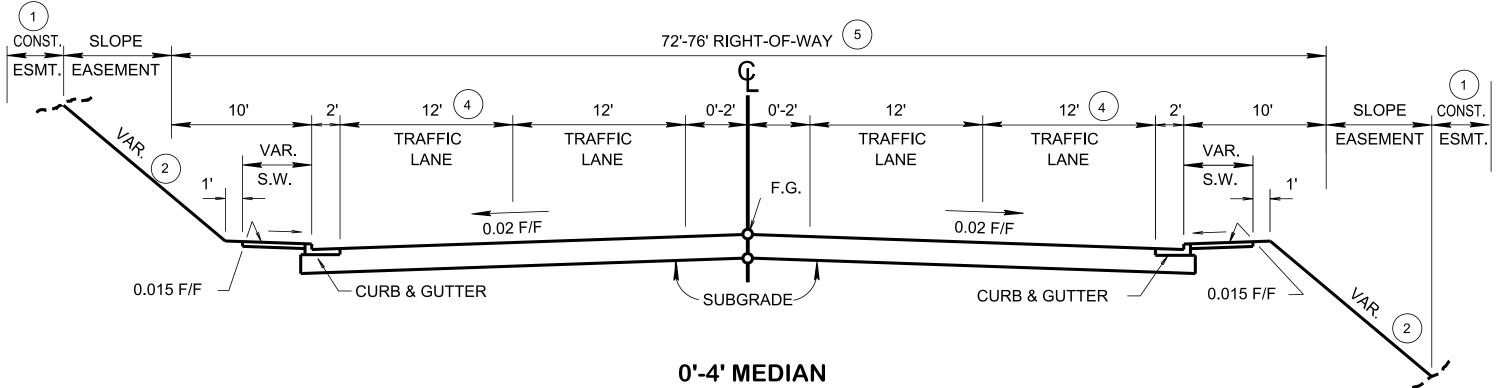

REV. 7-31-13: REVISED SIDEWALK WIDTH

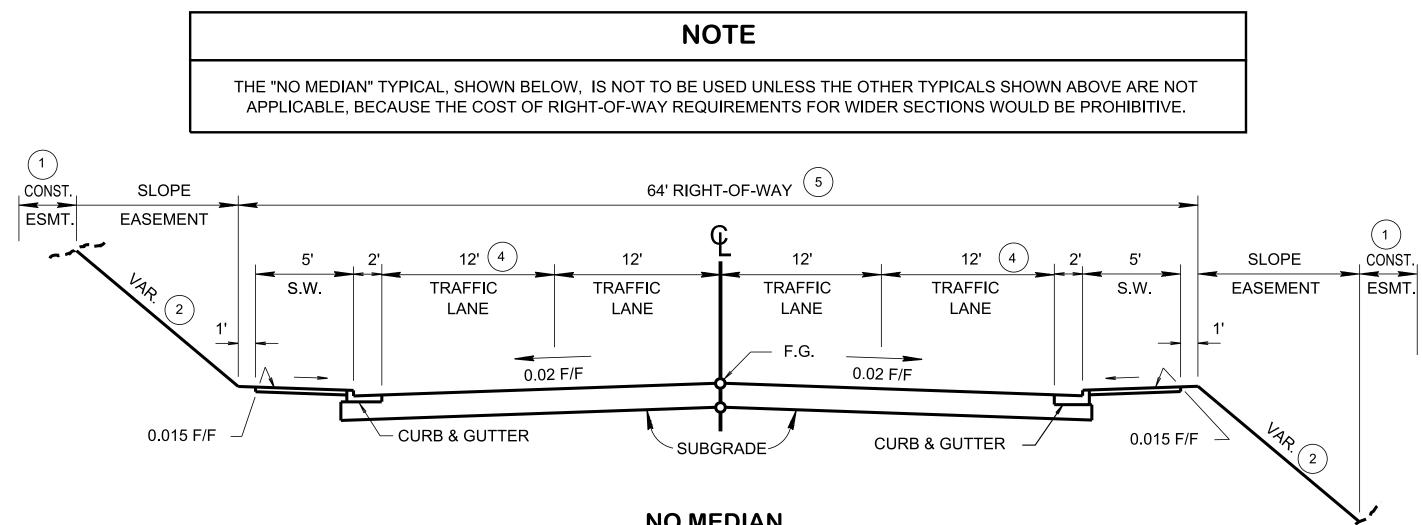
REV: 1-25-16: REVISED GENERAL NOTES.


REV: 10-10-16: REVISED GENERAL NOTES. CLARIFIED SIDEWALK DIMENSION.


REV: 01-07-19: ADDED SIDEWALK LATERAL OFFSET / BUFFER REQUIREMENT TO GENERAL NOTES. REVISED CURBS GENERAL NOTE AND ADDED NOTER NO. 5). ADJUSTED DRAWING NAME AND REDREW SHEET.

PER HOUR OR LESS. IF HIGHER SPEED IS	
RS /INGS IN THE RD01-SE-SERIES AND	
TANDARD DRAWING RD01-TS-6A. VEHICLE EMERGENCIES AND TO PROVIDE DESTRIAN FACILITIES. UNDER NO DER BE CONSIDERED TO FACILITATE HERE EXISTING ROADWAY IS LACKING MIN RESURFACING, RETROFITTING, AND PROVIDED. IN SOME INSTANCES, ADJUSTMENT	
OPE AND FORESLOPE DESIGN WILL VERY FROM AL RULE 3:1 SLOPES OR FLATTER ARE IN REGION IV. 2:1 SLOPES ARE APPLICABLE IN RICTIONS OR COST WARRANTS A STEEPER	
CURBS. OUTSIDE CURBS WILL BE 6" SLOPING . 6" VERTICAL CURBS MAY BE USED IN URBAN	
DE THE 6" WIDTH OF PROPOSED CURB, 5' WIDE. REFER TO MM-CR-SERIES FOR CURB POSED, BIKE LANE SHALL BE PLACED AS FAR E OF TRAVELED WAY. SEE BIKE LANE BUFFER M-PM-3. OR MINIMUM SIDEWALK LATERAL OFFSET/	
/INIMUM REQUIRED BUFFER MAY BE COMPOSED R, PARKING LANE, BIKE LANE, CURB AND GUTTER,	
ERED ON THIS SHEET, REFERENCE SHOULD BE DESIGN OF HIGHWAYS AND STREETS," AASHTO, 4-74, 5-14, 6-14, 7-34, AND TO THE CURRENT	
TING, AND RECONSTRUCTION WAY IS LACKING MIN 8' SHOULDER WIDTH, MIN 4' ANCES, ADJUSTMENT TO LANE WIDTH MAY BE INOT BE ACHIEVED DUE TO THE ROW 'C, THEN ADDITIONAL MITIGATION STRATEGIES OR GROUND MOUNTED ADVANCED WARNING	
GNS STRUCTURES, SIGNAL, LUMINARY AND UTSIDE THE PEDESTRIAN ACCESSIBLE SPACE, .K AREA AND INSIDE RIGHT-OF-WAY.	




MINOR REVISION -- FHWA

NO MEDIAN

LLP

GENERAL NOTES

DESIGN SPEED

THESE SECTIONS ARE FOR 45 MILES PER HOUR OR LESS.

ALIGNMENT

SEE APPROPRIATE STANDARD DRAWING IN THE RD01-TS-SERIES FOR HORIZONTAL AND VERTICAL ALIGNMENT.

SUPERELEVATION AND MEDIAN BARRIERS

SEE APPROPRIATE STANDARD DRAWING IN THE RD01-SE-SERIES AND THE "ROADSIDE DESIGN GUIDE," AASHTO, 2002, FOR MEDIAN BARRIERS.

CONSTRUCTION EASEMENT

(1) 10 FEET MINIMUM DESIRABLE.

SLOPES

(2) ON URBAN PROJECTS THE BACKSLOPE AND FORESLOPE DESIGN WILL VARY FROM PROJECT TO PROJECT, AS A GENERAL RULE USE THE FOLLOWING:

3:1 SLOPES OR FLATTER ARE DESIRABLE AND 2:1 SLOPES ARE APPLICABLE IN AREAS WHERE RIGHT-OF-WAY RESTRICTIONS OR COST WARRANTS A STEEPER THAN 3:1 SLOPE. THE MAXIMUM SLOPE IN REGION IV IS 3:1.

MEDIAN CURBS

(3) MEDIAN CURBS WILL BE SLOPING CURBS. VERTICAL CURBS WILL NOT BE PERMITTED.

SIDEWALKS

SIDEWALK WIDTH SHALL NOT INCLUDE THE SIX INCH WIDTH OF PROPOSED CURB, SIDEWALK SHALL BE A MINIMUM OF FIVE FEET WIDE.

SEE STANDARD DRAWING MM-TS-2 FOR MINIMUM SIDEWALK LATERAL OFFSET/ BUFFER FROM TRAFFIC LANE.

BICYCLE PROVISIONS

(4) SEE STANDARD DRAWING MM-TS-1 WHEN BICYCLE LANE PROVISIONS ARE REQUIRED AND MM-PM-1 THRU MM-PM-5 FOR PAVEMENT MARKING INFORMATION.

SERVICE APPURTENANCE

(5)SERVICE APPURTENANCE (LARGE SIGNS STRUCTURES, SIGNAL, LUMINARY AND UTILITY POLES) SHALL BE PLACED OUTSIDE THE PEDESTRIAN ACCESSIBLE SPACE, PREFERABLE OUTSIDE THE SIDEWALK AREA AND INSIDE RIGHT-OF-WAY.

REV. 10-15-02: NEW SHEET. REPLACES RD-TS-6A.

REV. 1-24-12: ADDED REFERENCE TO NOTE 4.

REV. 7-31-13: REVISED SIDEWALK WIDTH

REV. 01-07-19: ADDED SIDEWALK LATERAI OFFSET/ BUFFER REQUIREMENT TO GENERAL NOTES. REVISED SIDEWALK CROSS SLOPE FROM 2% TO 1.5%. REVISED BICYCLE PROVISIONS GENERAL NOTE AND ADDED NOTE NO. (5). ADJUSTED DRAWING NAME AND REDREW SHEET.

10-15-2002

MINOR REVISION -- FHWA APPROVAL NOT REQUIRED

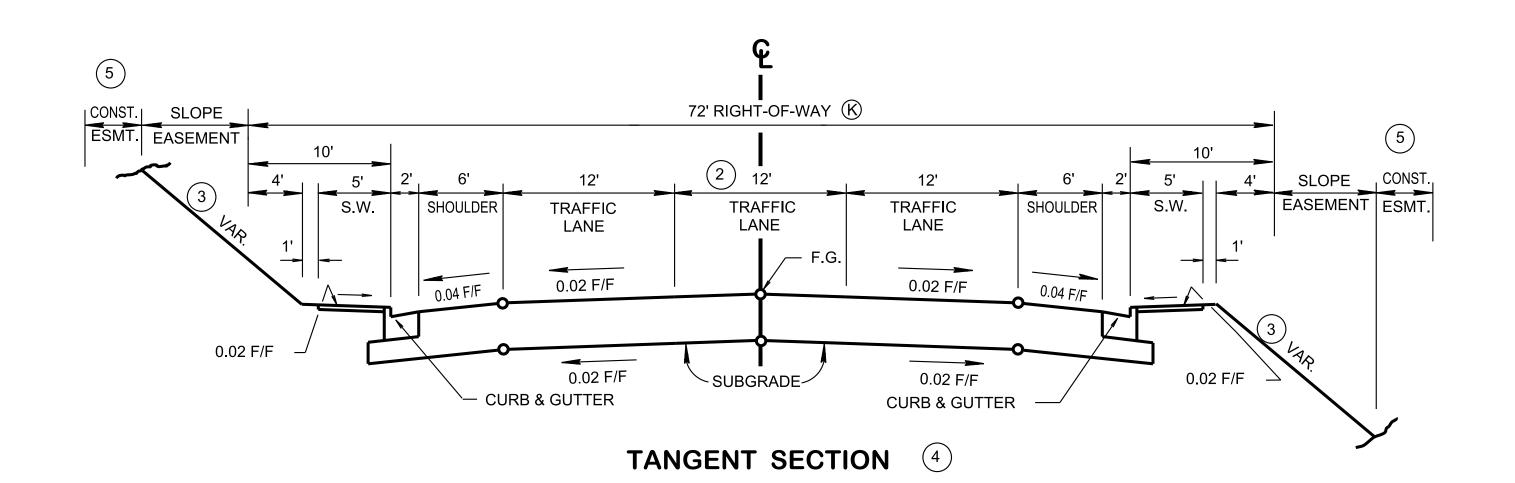
STATE OF TENNESSEE

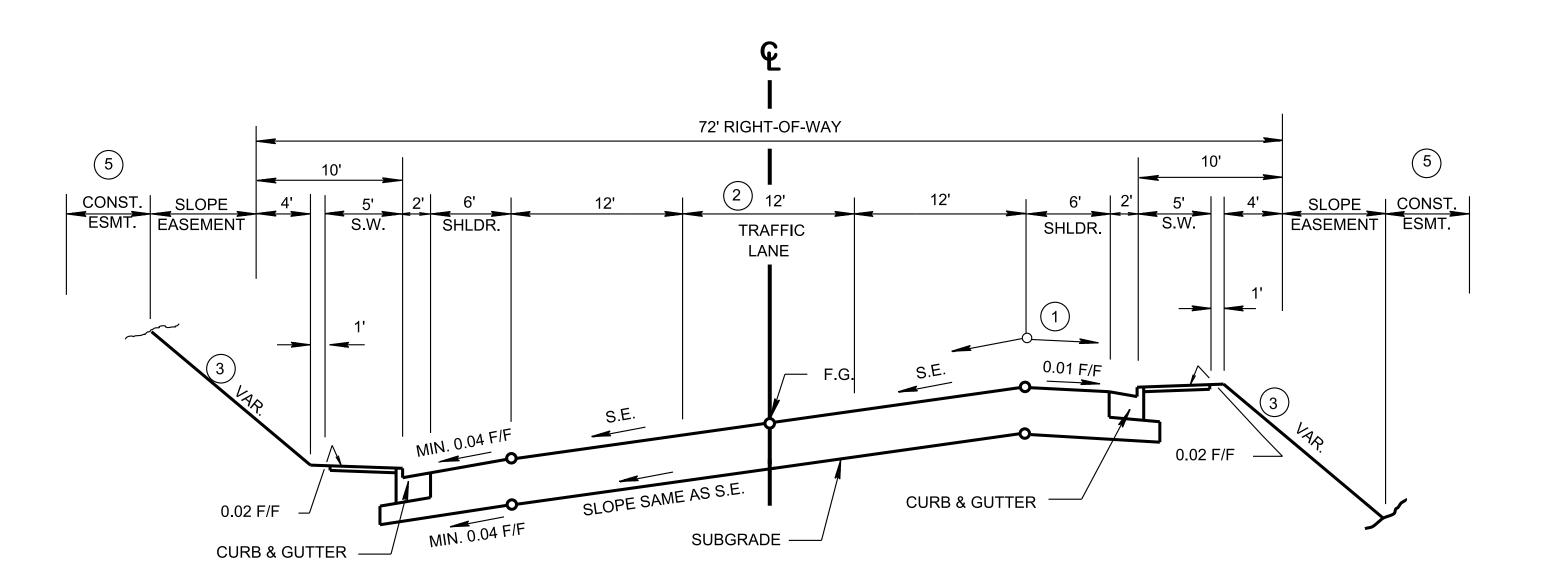
DEPARTMENT OF TRANSPORTATION

TYPICAL

CURB AND GUTTER

SECTIONS


WITHOUT


SHOULDERS

RD01-TS-6A

STANDARD

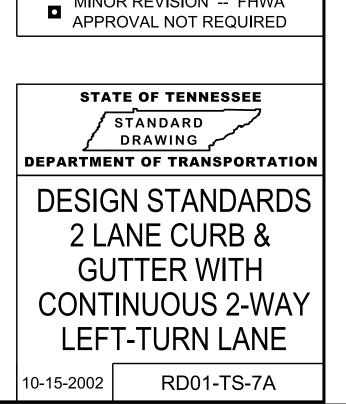
DRAWING

SUPERELEVATED SECTION (4)

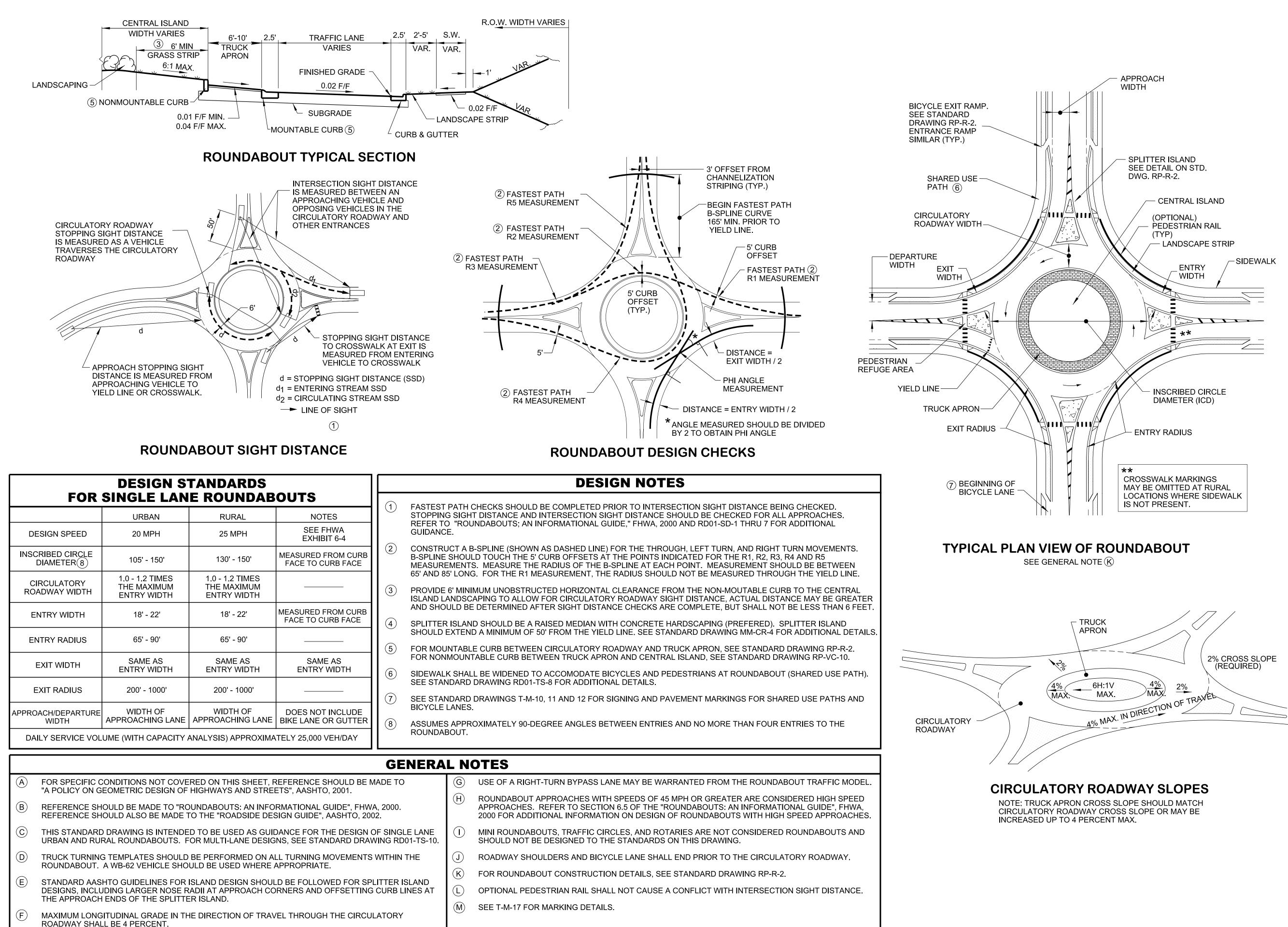
LLP

NOT TO SCALE

FOOTNOTES


- (1) THE SLOPES OF THE SHOULDER AND ROADWAY PAVEMENT SHALL NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 0.07 FOOT PER FOOT.
- (2) THE DESIRABLE LANE WIDTH IN INDUSTRIAL AREAS WITH HEAVY TRUCK TRAFFIC IS 14 FEET.
- (3) ON URBAN PROJECTS THE BACKSLOPE AND FORESLOPE DESIGN WILL VARY FROM PROJECT TO PROJECT, AS A GENERAL RULE USE THE FOLLOWING:
 - 3:1 SLOPES OR FLATTER ARE DESIRABLE AND 2:1 SLOPES ARE APPLICABLE IN AREAS WHERE RIGHT-OF-WAY RESTRICTIONS OR COST WARRANTS A STEEPER THAN 3:1 SLOPE. THE MAXIMUM SLOPE IN REGION IV IS 3:1.
- (4)THESE TYPICAL SECTIONS WERE DEVELOPED FOR LOCAL ROADS AND STREETS AND COLLECTOR ROADS WITH DESIGN SPEEDS 45 MILES PER HOUR AND LOWER. IF A CTWLTL IS NEEDED ABOVE 45 MILES PER HOUR OR ON AN ARTERIAL, THE DESIGNER WILL REFER TO THE PROPER RD01-TS-SERIES SHEET FOR TYPICAL SECTION REQUIREMENTS.
- (5)10 FEET MINIMUM DESIRABLE.

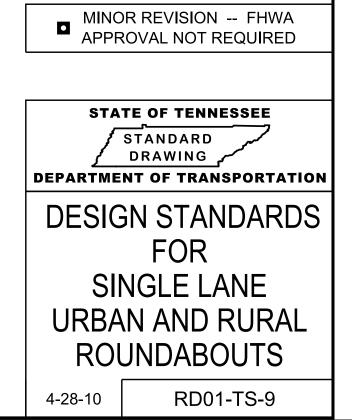
GENERAL NOTES

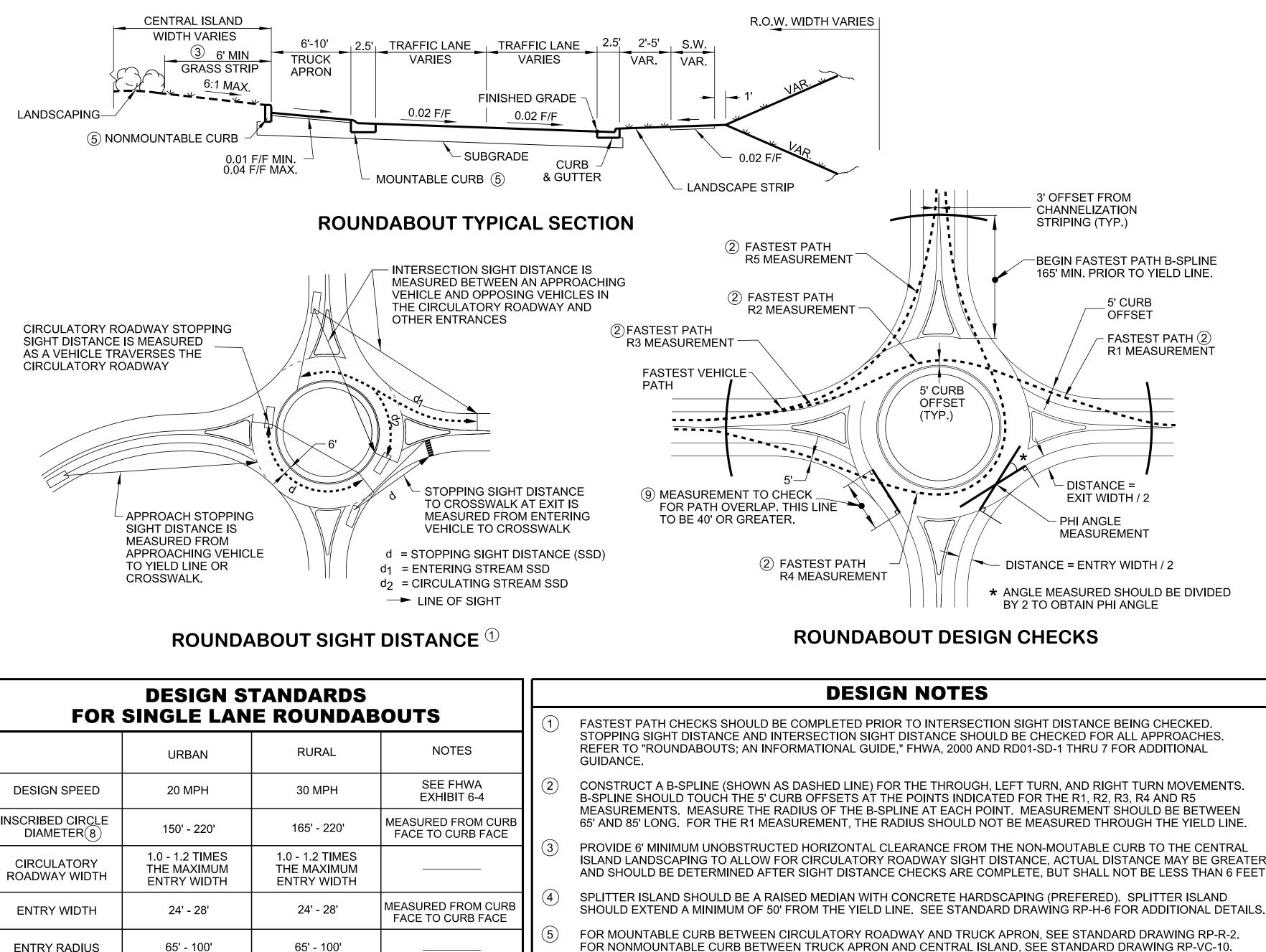

- (A)FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS," AASHTO, 2001.
- B PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS," AASHTO, 2001.
- \bigcirc REFERENCE SHOULD ALSO BE MADE TO THE "ROADSIDE DESIGN GUIDE," AASHTO, 2002.
- \bigcirc MINIMUM RIGHT-OF WAY IS THAT REQUIRED TO ACCOMMODATE SLOPES AND EROSION CONTROL FEATURES (15 TO 20 FEET OUTSIDE THE SLOPE LINES IS DESIRABLE IN RURAL AREAS).
- (E) ALL NEW AND REHABILITATED BRIDGES SHALL BE DESIGNED FOR HS-20 LOADING. THE MINIMUM CLEAR WIDTH FOR NEW AND REHABILITATED BRIDGES SHALL BE EQUAL TO THE FULL WIDTH OF THE APPROACH ROADWAY, CURB-TO-CURB OR FULL SHOULDER WIDTH AS APPLICABLE.
- FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HAVE ADEQUATE STRENGTH AND A WIDTH AT LEAST EQUAL TO THE WIDTH OF THE TRAVELED WAY PLUS 2-FEET CLEARANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE WIDENING OR REPLACEMENT IF THEY DO NOT PROVIDE AT LEAST 3-FEET CLEARANCE ON EACH SIDE OR ARE NOT CAPABLE OF HS-20 LOADINGS. AS AN INTERIM MEASURE ALL BRIDGES THAT ARE LESS THAN FULL WIDTH SHOULD BE CONSIDERED FOR SPECIAL NARROW BRIDGE TREATMENTS SUCH AS SIGNING AND PAVEMENT MARKING.
- (G) THIS TYPICAL SECTION IS DESIGNED TO ACCOMMODATE AN AVERAGE DAILY TRAFFIC OF 5,000 TO 12,500 VEHICLES PER DAY, WHICH IS CONSIDERED TO BE THE TRAFFIC VOLUME NEEDED TO JUSTIFY THE CONTINUOUS TWO-WAY LEFT TURN LANE (CTWLTL) FOR A 2-LANE HIGHWAY. THE TYPICAL SECTION DESIGN FOR VOLUMES LESS THAN 5,000 VEHICLES PER DAY USES THE DESIGN STANDARDS SHOWN ON STANDARD DRAWINGS RD01-TS-1, RD01-TS-2 AND RD01-TS-3,
- (H) WHEN ENCOUNTERING MAJOR INTERSECTIONS. DO NOT EXTEND THE CONTINUOUS TWO-WAY LEFT TURN LANE (CTWLTL) UP TO THE INTERSECTION. TERMINATE THE CTWLTL IN ADVANCE OF THE INTERSECTION TO ALLOW DEVELOPMENT OF AN EXCLUSIVE LEFT-TURN LANE. MINOR INTERSECTIONS MAY NOT WARRANT AN EXCLUSIVE LEFT-TURN LANE. STRIPING DETAILS ARE SHOWN ON T-M-1 OR CURRENT EDITION OF THE "MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES."
- ON WIDENING OF EXISTING TWO-LANE HIGHWAY TO THREE-LANE HIGHWAY THE SHOULDER WIDTH MAY BE REDUCED TO ZERO FEET AND THE ROADWAY LANE WIDTH TO ELEVEN (11) FEET UNDER THE FOLLOWING CONDITIONS:
 - (11) THE DESIGN ADT IS 12,500 VEHICLES PER DAY OR LESS.
 - (12)THE DESIGN SPEED IS 35 MILES PER HOUR OR LESS.
 - (13) THERE ARE RESTRICTED AND/OR LIMITED CLEARANCES FOR RIGHT-OF-WAY DUE TO THE EXISTING SOCIAL, ENVIRONMENTAL OR ECONOMIC CONDITIONS.
 - (14)WHEN SUFFICIENT NUMBERS OF ACCIDENTS AND/OR DELAYS IN TRAFFIC EXIST DUE TO MID-BLOCK LEFT TURNS TO JUSTIFY A CONTINUOUS LEFT TURN LANE ON EXISTING TWO-LANE ROADWAY.
- (J)SEE DETAIL A FOR GUARDRAIL PLACEMENT AND GUARDRAIL STANDARD DRAWINGS (S-GR-SERIES).
- (K) SERVICE APPURTENANCE (LARGE SIGNS STRUCTURES, SIGNAL, LUMINARY AND UTILITY POLES) SHALL BE PLACED OUTSIDE THE PEDESTRIAN ACCESSIBLE SPACE, PREFERABLE OUTSIDE THE SIDEWALK AREA AND INSIDE RIGHT-OF-WAY.

REV. 10-15-02: NEW SHEET. REPLACES RD-TS-7A.

REV. 01-07-19: ADDED GENERAL NOTE NO. (K). REDREW SHEET.

MINOR REVISION -- FHWA


NOT TO SCALE


LLP

REV. 2-1-12: ADDED OPTIONAL PEDESTRIAN RAIL.

REV. 6-15-12: RENAMED SHEET FROM RD-TS-9. ADDED NOTE (M).

REV. 01-07-19: REVISED NOTE NO. (5). REDREW SHEET.

- SEE STANDARD DRAWING RD-TS-8 FOR ADDITIONAL DETAILS.
- LANES.
- ROUNDABOUT.

	GENERA		OTES
A	FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS", AASHTO, 2001.	G	USE OF A
B	REFERENCE SHOULD BE MADE TO "ROUNDABOUTS: AN INFORMATIONAL GUIDE", FHWA, 2000. REFERENCE SHOULD ALSO BE MADE TO THE "ROADSIDE DESIGN GUIDE", AASHTO, 2002.	(H)	ROUNDAE APPROAC 2000 FOR
C	THIS STANDARD DRAWING IS INTENDED TO BE USED AS GUIDANCE FOR THE DESIGN OF MULTI - LANE URBAN AND RURAL ROUNDABOUTS. FOR SINGLE LANE DESIGNS, SEE STANDARD DRAWING RD-TS-9.		MINI ROU SHOULD I
\bigcirc	TRUCK TURNING TEMPLATES SHOULD BE PERFORMED ON ALL TURNING MOVEMENTS WITHIN THE ROUNDABOUT. A WB-62 VEHICLE SHOULD BE USED WHERE APPROPRIATE.	Ĵ	ROADWA
E	STANDARD AASHTO GUIDELINES FOR ISLAND DESIGN SHOULD BE FOLLOWED FOR SPLITTER ISLAND DESIGNS, INCLUDING LARGER NOSE RADII AT APPROACH CORNERS AND OFFSETTING CURB LINES AT THE APPROACH ENDS OF THE SPLITTER ISLAND.	K	FOR ROU
F	MAXIMUM LONGITUDINAL GRADE IN THE DIRECTION OF TRAVEL THROUGH THE CIRCULATORY ROADWAY SHALL BE 4 PERCENT.	M	SEE T-M-1

SAME AS

ENTRY WIDTH

200' - 1000'

WIDTH OF

DAILY SERVICE VOLUME (WITH CAPACITY ANALYSIS) APPROXIMATELY 45,000 VEH/DAY

APPROACHING LANE | APPROACHING LANE | BIKE LANE OR GUTTEI

SAME AS

ENTRY WIDTH

DOES NOT INCLUDE

SAME AS

ENTRY WIDTH

200' - 1000'

WIDTH OF

EXIT WIDTH

EXIT RADIUS

PPROACH/DEPARTURE

WIDTH

LLP

SIDEWALK SHALL BE WIDENED TO ACCOMODATE BICYCLES AND PEDESTRIANS AT ROUNDABOUT (SHARED USE PATH).

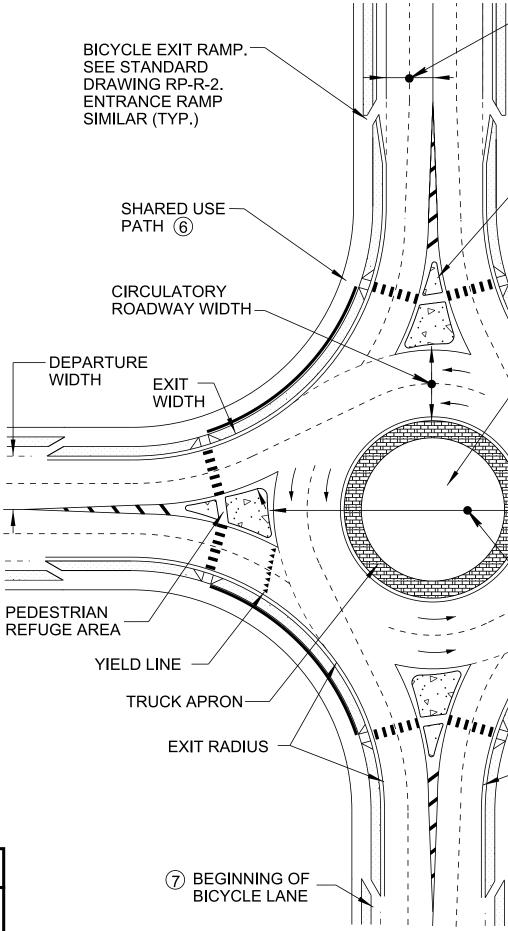
SEE STANDARD DRAWINGS T-M-10, 11 AND 12 FOR SIGNING AND MARKINGS FOR SHARED USE PATHS AND BICYCLE

ASSUMES APPROXIMATELY 90-DEGREE ANGLES BETWEEN ENTRIES AND NO MORE THAN FOUR ENTRIES TO THE

PATH OVERLAP SHOULD BE MEASURED AT THE ENTRANCE AND EXITS OF MULTI-LANE ROUNDABOUTS. LINE SHOULD BE DRAWN TANGENT TO THE CENTER OF THE ENTRANCE/EXIT AND CIRULATORY ROADWAY.

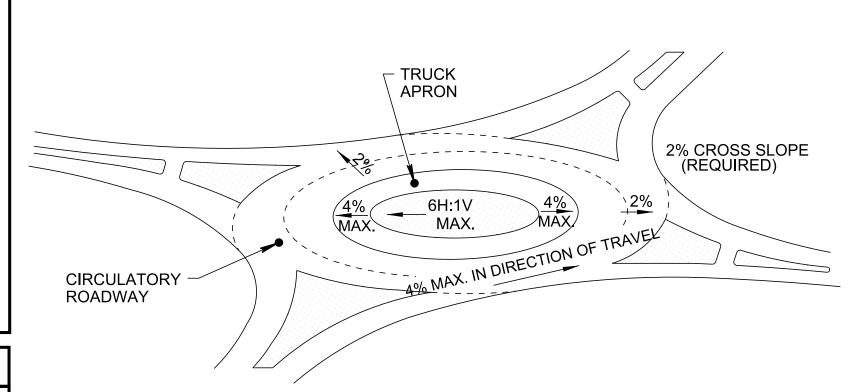
A RIGHT-TURN BYPASS LANE MAY BE WARRANTED FROM THE ROUNDABOUT TRAFFIC MODEL

ABOUT APPROACHES WITH SPEEDS OF 45 MPH OR GREATER ARE CONSIDERED HIGH SPEED ACHES. REFER TO SECTION 6.5 OF THE "ROUNDABOUTS: AN INFORMATIONAL GUIDE", FHWA, OR ADDITIONAL INFORMATION ON DESIGN OF ROUNDABOUTS WITH HIGH SPEED APPROACHES.


UNDABOUTS, TRAFFIC CIRCLES, AND ROTARIES ARE NOT CONSIDERED ROUNDABOUTS AND) NOT BE DESIGNED TO THE STANDARDS ON THIS DRAWING.

AY SHOULDERS AND BICYCLE LANE SHALL END PRIOR TO THE CIRCULATORY ROADWAY.

UNDABOUT CONSTRUCTION DETAILS, SEE STANDARD DRAWING RP-R-2.


IAL PEDESTRIAN RAIL SHALL NOT CAUSE A CONFLICT WITH INTERSECTION SIGHT DISTANCE.

1-17 FOR MARKING DETAILS.

TYPICAL PLAN VIEW OF MULTI-LANE ROUNDABOUT

SEE GENERAL NOTE (K)

CIRCULATORY ROADWAY SLOPES

NOTE: TRUCK APRON CROSS SLOPE SHOULD MATCH CIRCULATORY ROADWAY CROSS SLOPE OR MAY BE INCREASED UP TO 4 PERCENT MAX.

APPROACH WIDTH SPLITTER ISLAND SEE DETAIL ON STD. DWG. RP-R-2. **CENTRAL ISLAND** (OPTIONAL) **PEDESTRIÁN RAIL** (TYP) - LANDSCAPE STRIP ENTRY SIDEWALK WIDTH -----**INSCRIBED CIRCLE** DIAMETER (ICD) ENTRY RADIUS **CROSSWALK MARKINGS** MAY BE OMITTED AT RURAL LOCATIONS WHERE SIDEWALK IS NOT PRESENT.

MINOR REVISION -- FHWA APPROVAL NOT REQUIRED

REV. 2-1-12: ADDED OPTIONAL PEDESTRIAN RAIL.

REV. 6-15-12: RENAMED SHEET FROM RD-TS-10. ADDED NOTE (M).

REV. 01-07-19: REVISED NOTE NO. (5). REDREW SHEET.

																					E	MAX	= 0	.04	DES	SIRA	BLE																				
(3 e d		V	= 20 (N	ЛРН)			V =	25 (MI	PH)			V	/ = 30	(MPH)		١	/ = 35	(MPH))			V = 40	0 (MP	PH)			۷:	= 45 (I	MPH)			V	/ = 50 (MPH)			v	= 55 (MPH)			V = 60	(MPH)	1	
ľ		R	Γ	lumbei	r of Lane	es	R	Nu	mber o	of Lai	nes	R	r	Numb	er of I	Lanes	R		Numb	er of I	Lanes	R	2	Num	ber o	of Lane	s	R	N	umbe	er of La	nes	R	Γ	Numbe	er of Lai	nes	R	N	lumbe	er of La	ines	R	Nu	nber c	of Lane	:s
	(%)	MIN (FT	2	3	4 5	6	MIN. (FT)	2	3 4	5	6 6	MIN. (FT)	2	3	4	5 6	5 MIN (FT)	2	3	4	5	6 MII (F1	2	3	4	5	6	MIN. (FT)	2	3	4 5	5 6	MIN. (FT)	2	3	4 5	6	MIN. (FT)	2	3	4	5 6	MIN. (FT)	2	3 4	5	6
	NC	10	7 0	0	0 0	0	198	0 (0 0	0) 0	333	0	0	0	0 () 510	0	0	0	0	0 76	2 0	0	0	0	0	1039	0	0	0 () 0	7220	0	0	0 0	0	8650	0	0	0 0	0 0	10300	0 (<u> </u>	0	0
	2	92	32	40 4	49 57	65	167	34 4	13 51	L 60	0 69	273	36	45	55	64 7	3 408	39	48	58	68 7	78 59	3 42	1 52	62	72	83	794	44	55	67 7	8 89	4940	48	60	72 84	1 96	5950	51	64	77 8	39 103	7080	53 6	6 80	93	107
	2.2	91	36	44 5	54 62	72	165	38 4	17 57	7 66	6 76	270	40	50	60	70 8	0 404	43	53	64	75 8	36 58	6 46	6 57	68	80	91	785	49	61	73 8	6 98	4280	53	66	79 92	2 106	5180	56	70	84 9	8 113	6190	59 7	3 88	103	118
	2.4	91	39	48 5	58 68	78	164	41 5	51 62	2 72	2 83	268	44	54	65	76 8	8 400	46	58	70	81 9	93 58	0 50	0 62	74	87	100	776	53	66	80 9	3 107	3690	58	72	86 10	1 116	4500	61	76	92 1	07 123	5410	64 8	0 96	5 112	129
	2.6	90	42	52 6	53 74	85	163	45 5	55 67	7 78	8 90	265	47	59	71	83 9	5 396	50	63	75	88 1	.01 57	′3 54	4 67	81	94	108	767	58	72	87 10	01 116	3130	62	78	94 10	9 125	3870	66	83 🗄	100 1	16 133	4700	69 8	6 104	4 121	139
	2.8	89	45	57 6	58 79	91	161	48 6	50 72	2 84	4 96	263	51	63	76	89 10)2 393	54	67	81	95 1	.09 56	7 58	8 72	87	101	116	758	62	77	93 10)9 125	2660	67	84 :	101 11	8 135	3310	71	89 3	107 1	25 144	4060	75 9	3 112	2 131	150
	3	89	49	61 7	73 85	98	160	51 6	54 77	7 90	0 103	261	55	68	82	95 11	10 389	58	72	87	102 1	17 56	1 62	2 77	93	109	125	750	67	83 🔅	100 11	L7 134	2290	72	90	108 12	6 145	2860	77	95	115 1	34 154	3530	80 10	00 120	0 140	161
	3.2	88	52	65 7	78 91	104	159	55 6	58 82	2 96	6 110	259	58	72	87	102 11	17 385	62		93	108 1	24 55	6 6	5 82		116		742	71	89 :	107 12	24 143	1980	77	96	115 13	4 154	2490	82	102	123 14	43 164	3090	85 10	J6 125	3 149	172
	3.4	88	55	69 8	33 96	111	158	58 7	73 87	7 10)2 117	256	62	77	93	108 12	24 382	66	82	99	115 1		_	_		5 123		734	76	94 🔅	113 13	32 152	1720	82	102	122 14	3 164	2170	87	108	130 1	52 174	2700	91 1	13 136	5 159	182 193 2
	3.6	_	58		38 102	2 117	157	62 7	77 93	_	8 124		65	81	98	115 13	32 378	70	87		122 1	_	4 74	_		2 130		726	80			10 161	1480	86	108	130 15	1 174	1880	92	114		61 185		96 12	20 14/	1 168	193
	3.8	87	62	77 9	92 108	3 124	155	65 8	31 98	3 11	4 131	252	69	86	104	121 13	39 375	74	92	110	129 1	48 53	9 79	_		3 138		718				18 170		91	114	137 16	0 183	1600	97			70 195			_		
	4	86	65		97 114		154	69 8	35 10	_	20 138			91		127 14	46 371	77	96			.56 53			3 124	1 145	166		i		133 15	_	926	96			_					79 205			_		
																					EN	ЛАХ	= 0.	06 /	ALL	.ow/	ABLI		THOD	2		(4		→	METH	OD 5										
	3) e d			= 20 (M	-				25 (MP	-				/ = 30 (-			_	/ = 35 (-				V = 40	-	-				= 45 (N	-				= 50 (N	-				= 55 (N	-				0 (MPH	-	
		R		Number	r of Lane	_		Nu	imber o	of Lan	nes	R		Numb	er of L	anes			Numb	er of L	anes	R	`	Num	iber o	of Lanes		R	N	lumbe	er of Lai	nes	R		Numbe	er of Lan	es	R		Numbe	er of La	nes	R	Nu	mber o	of Lanes	,
	(%)	MIN (FT	2	3	4 5	6	MIN. (FT.)	2	3 4	5	5 6	MIN. (FT.)	2	3	4	5 6	5 (FT.)	2	3	4	5	6 (FT	2	3	4	5	6	MIN. (FT.)	2	3	4 5	5 6	MIN. (FT.)	2	3	4 5	6	MIN. (FT.)	2	3	4	5 6	MIN. (FT.)	2	3 4	5	6
	NC	107	' 0	0	0 0	0	198	0	0 0	0) 0	333	0	0	0	0 (510		0	0	0	0 76	2 0	0	0	0	0	1039	0	0	0 (0 0	7870	0	0	0 0	0	9410	0	0	0	0 0	11100	0	0 0	0	0
	2	92	32	40 4	49 57	65	167	34 4	43 51	L 60	0 69	273	36	45	55	64 7	3 408	39	48	58	68 7	78 59	3 43	1 52	62	72	83	794	44	55	67 7	8 89	5700	48	60	72 84	96	6820	51	64	77 8	39 103	8060	53 6	6 80	93	107

<u>م</u>			V =	20 (N	PH)			V	= 25	(MPH))			v	/ = 30	(MPH)			V = 3	85 (MP	'H)			١	/ = 40	(MPH))			V =	45 (MP	H)			V	= 50 (MPH)			V	= 55 (N	MPH)				V = 6	50 (MPH	H)
2	ed -	R	Nu	umbe	of Lan	es	R		Numb	ber of	Lanes		R		Numb	ber of	Lanes		R	Nu	mber	of Lan	es	R		Num	ber of	Lanes		R	Nu	ımber o	of Lanes	s	R		Numb	er of La	nes	R		Numbe	er of La	nes		R	Nu	mber c	of Lanes
(%)	MIN. (FT.)	2	3	4 5	6	MIN. (FT.)	2	3	4	5	6	MIN. (FT.)	2	3	4	5	6 I	MIN. (FT.)	2	3 4	5	6	MIN. (FT.)	2	3	4	5	6 I	MIN. (FT.)	2	3 4	5	6	MIN. (FT.)	2	3	4	56	MIN (FT.)	2	3	4	5 6	5	MIN. (FT.)	2 :	3 4	5
1	NC	107	0	0	0 0	0	198	0	0	0	0	0	333	0	0	0	0	0	510	0 () 0	0	0	762	0	0	0	0	0 1	1039	0	0 0	0	0	7870	0	0	0	0 0	9410	0	0	0	0 0	, 11	1100	0 (0 0	0
	2	92	32 4	40	19 57	65	167	34	43	51	60	69	273	36	45	55	64	73	408	39 4	8 58	3 68	3 78	593	41	52	62	72	83	794	44 5	55 67	, 78	89	5700	48	60	72 8	34 96	6820	51	64	77 8	89 103	J3 8C	3060	53 6	66 80) 93 1
2	2.2	91	36 4	44	54 62	72	165	38	47	57	66	76	270	40	50	60	70	80	404	43 5	3 64	1 75	5 86	586	46	57	68	80	91 [·]	785	49 6	51 73	8 86	98	5100	53	66	79 9	92 106	6 6110	56	70	84 9	98 113	.3 72	7230	59 7	73 88	3 103 1
2	2.4	91	39 4	48	58 68	78	164	41	51	62	72	83	268	44	54	65	76	88	400	46 5	8 70) 81	L 93	580	50	62	74	87	100 ⁻	776	53 6	56 80	93	107	4600	58	72	86 1	01 116	5 5520	61	76	92 1	07 12	.3 65	5540	64 8	<i>.</i> 0 96	5 112 1
2	2.6	90	42 5	52	53 74	85	163	45	55	67	78	90	265	47	59	71	83	95	396	50 6	3 75	5 88	3 101	573	54	67	81	94	L08 ⁻	767	58 7	72 87	/ 101	116	4170	62	78	94 1	09 125	5 5020	66	83 1	100 1	16 13	3 59	5950	69 8	36 104	4 121 1
2	2.8	89	45 5	57	58 79	91	161	48	60	72	84	96	263	51	63	76	89	102	393	54 6	7 83	L 95	5 109	567	58	72	87	101	L16 [·]	758	62	77 93	3 109	125	3800	67	84	101 1	18 135	5 4580	71	89 1	107 1	25 14	,4 54	5440	75 93	/3 112	2 131 1
	3	89	49 6	61	73 85	98	160	51	64	77	90	103	261	55	68	82	95	110	389	58 7	2 87	7 10	2 117	561	62	77	93	109	L25 ⁻	750	67 8	33 10	0 117	134	3480	72	90	108 1	26 145	5 4200	77	95 1	115 1	34 15	,4 49	1990	80 10	00 120	0 140 1
3	3.2	88	52 6	65	78 91	104	159	55	68	82	96	110	259	58	72	87	102	117	385	62 7	7 93	3 10	8 124	556	66	82	99	116	133	742	71 8	39 10	7 124	143	3200	77	96	115 1	34 154	4 3860	82	102	123 1	.43 164	,4 46	4600	85 10	06 128	8 149 1
3	3.4	88	55 6	69	33 96	111	158	58	73	87	102	117	256	62	77	93	108	124	382	66 8	2 99) 11	5 132	550	70	88	106	123	[.] 141	734	76 9	94 11	3 132	152	2940	82	102	122 1	43 164	4 3560	87	108	130 1	.52 174	4 42	4250	91 11	13 136	6 159 1
3	3.6	87	58 7	73	38 102	2 117	157	62	77	93	108	124	254	65	81	98	115	132	378	70 8	7 10	5 12	2 140	544	74	93	112	130	[.] 150	726	80 1	00 12	0 140	161	2710	86	108	130 1	51 174	4 3290	92	114	138 1	61 18	,5 39	3940	96 12	20 144	4 168 1
3	3.8	87	62 7	77	92 108	8 124	155	65	81	98	114	131	252	69	86	104	121	139	375	74 9	2 11	0 12	9 148	539	79	98	118	138	L58 ⁻	718	84 1	05 12	7 148	170	2490	91	114	137 1	60 183	3 3040	97	121	146 1	70 19	/5 36	3650 1	101 12	26 152	2 177 2
	4	86	65 8	81	97 114	4 130	154	69	85	103	120	138	250	73	91	109	127	146	371	77 9	6 11	6 13	5 156	533	83	103	124	145	166	711	89 1	11 13	3 156	179	2300	96	120	144 1	68 193	3 2810	102	127 ⁻	153 1	79 20	/5 33	3390 1	107 13	33 160	0 187 2
4	1.2	85	68 8	85 í	02 119	9 137	153	72	90	108	126	145	248	76	95	115	134	153	368	81 10	01 12	2 14	2 163	528	87	108	130	152	L75 ⁻	703	93 1	16 14	0 163	188	2110	101	125	151 1	76 203	3 2590	107	134	161 1	.88 21	.6 31	3140 1	112 13	39 168	8 196 2
4	1.4	85		89 1	07 12	_	152	75	94	113		152	246	80	100		140	161	365		06 12	_	_	523	91	113				696		22 14	7 171	197	1940	106	131	158 1	85 212	_	112	140	169 1	97 22 [,]	_			46 176	
4	1.6	84																																															4 215 2
4	1.8																						_		_								_																2 224 2
	5					_							—				<u> </u>				_	_	_										_							_					_				0 233 2
5	5.2	83				_																_	_	_									_							_					_				8 243 2
5	5.4	82			31 153									<u> </u>			172					_	_										_						27 260										6 252 2
5	5.6	82			36 159	_								<u> </u>							_	_	_										_						35 270										4 261 3
5	5.8				41 165									<u> </u>			185			112 14	_	_	_					210											44 280										2 271 3
	6	81	97 1	121 1	46 170	0 196	144	103	128	154	180	207	231	109	136	164	191	219	340	116 14	15 17	4 20	3 233	485	124	155	186	217	250	643	133 1	66 20	0 233	268	833	144	179	216 2	52 289	9 1060	153	191 [230 2	68 30	8 13	.330 1	160 19) 9 240	0 280 3
																														ME	THOD	2 🗲					\rightarrow	METH	HOD 5										
																																		(4	4)														

1 SEE STANDARD DRAWING RD11-SE-1 FOR EQUATIONS, LEGEND AND GENERAL NOTES. TABLES ARE BASED ON MINIMUM RADII, SUPERELEVATION, SPEED AND NUMBER OF LANES ROTATED.

3 TABLE VALUES ARE FOR MINIMUM RADIUS OF CURVE AND SUPERELEVATION RUNOFF LENGTH. SEE STANDARD DRAWING RD11-SE-1 FOR EQUATIONS TO CALCULATE TANGENT RUNOUT LENGTH AND TOTAL TRANSITION LENGTH.

2 SPIRALS ARE RECOMMENDED FOR DESIGN SPEED OF 50 MPH OR GREATER AND DESIGN SUPERELEVATION OF 3 PERCENT OR GREATER.

NOT TO SCALE

DESIGN RUNOFF LENGTHS (L_R) (1)

E MAV = A A A DECIDADIE

DESIGN NOTES

(4) TABLE VALUES FOR URBAN LOW SPEED SUPERELEVATION (45 MPH OR LESS) ARE CALCULATED USING THE DISTRIBUTION METHOD 2 OF

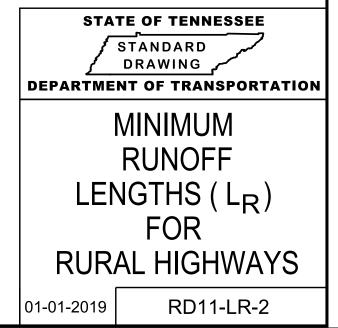
STATE OF TENNESSEE STANDARD DRAWING DEPARTMENT OF TRANSPORTATION MINIMUM RUNOFF LENGTHS(L_R) FOR URBAN HIGHWAYS RD11-LR-1 01-01-2019

. ALL OTHER VALUES ARE CALCULATED USING METHOD 5.

		V = 20 (N	1PH)		V = 25 ((MPH)			V = 30) (MPH)		v	= 35 (MP	Н)		,	V = 40 (M	PH)			V = 45 (ľ	MPH)			/ = 50 (MP	·H)		V = 55	(MPH)		v	= 60 (MPH	1)		V = 6!	5 (MPH)			V = 70 ((MPH)	— , !
(3) e d	R	-	r of lanes	R	-	per of la	ines	R		nber of lane	es F		Number (-	R		-	· of lanes		R	-	er of lanes	s		Number	-	R	1	ber of lanes	5		Number o	-	R		mber of la	anes	R	1	ber of lanes	<u> </u>
(%)	MIN. (FT.)	2 3	4 5	6 (FT.)	2 3	4	5 6	MIN. (FT.)	2 3	4 5	6 MI (F1	N. 2	3 4		6 MII (FT	N. 2 .)	3	4 5	6 (F	IN. 2 T.)	3	4 5	6	MIN. (FT.) 2	3 4	5 6	MIN. (FT.)	2 3	4 5		IIN. 2	3 4	5 6	MIN. (FT.)	2 3	3 4	5 6	MIN. (FT.)	2 3	4 5	6
NC	1640	0 0	0 0	0 2370	0 0	0	0 0	3240	0 0	0 0	0 42	60 0	0 0	0	0 541	.0 0	0	0 0	0 67	710 0	0	0 0	0	8150 0	0 0	0 0	9720	0 0	0 0	0 11	500 0	0 0	0 0	12900	0 0	<u> </u>	0 0	14500	0 0	0 0	0
2	1190	32 40	49 57	65 1720	34 43	51 6	60 69	1720	36 45	55 64	73 31	20 39	48 58	3 68 ⁻	78 397	'0 41	52 6	52 72	83 49	930 44	l 55	67 78	89	5990 48	60 72	2 84 96	5 7150	51 64	77 89	103 84	440 53	66 80	93 10	7 9510	56 69	9 84	98 112	10700	60 75	90 105	121
2.2	1070	36 44	54 62	72 1550	38 47	57 6	66 76	2130	40 50	60 70	80 28	00 43	53 64	l 75 a	86 357	0 46	57 6	8 80	91 44	140 49	9 61	73 86	98	5400 53	66 79	9 92 10	6 6450	56 70	84 98	113 70	520 59	73 88	103 118	8 8600	61 7f	6 92	107 123	9660	66 82	99 116	133
2.4	959	39 48	58 68	78 1400	41 51	62 7	72 83	1930	44 54	65 76	88 25	40 46	58 70) 81 9	93 324	0 50	62	74 87	100 40	030 53	3 66	80 93	107	4910 58	72 86	5 101 110	6 5870	61 76	92 107	123 69	930 64	80 96	112 129	7830	67 83	3 100	117 135	8810	72 90	108 126	145
2.6	872	42 52	63 74	85 1280	45 55	67 7	78 90	1760	47 59	71 83	95 23	20 50	63 75	5 88 1	.01 296	60 54	67 8	31 94	108 36	590 58	3 72	87 101	116	4490 62	78 94	4 109 12	5 5370	66 83	100 116	133 63	350 69	86 104	121 139	9 7180	73 90	0 109	127 146	8090	78 97	117 137	157
2.8	796	45 57	68 79	91 1170	48 60	72 8	84 96	1610	51 63	76 89	102 21	30 54	67 81	. 95 1	.09 272	.0 58	72 8	37 101	116 33	390 62	2 77	93 109	125	4130 67	84 10	1 118 13	5 4950	71 89	107 125	144 58	350 75	93 112	2 131 150	0 6630	78 97	7 117	137 157	7470	84 105	126 147	169
3	730	49 61	73 85	98 1070	51 64	77 9	90 103	1480	55 68	82 95	110 19	60 58	72 87	' 102 1	.17 251	.0 62	77 9	3 109	125 31	130 67	7 83	100 117	134	3820 72	90 10	8 126 14	5 4580	77 95	115 134	154 54	420 80	100 120	0 140 163	1 6140	84 10)4 126	147 168	6930	90 112	135 158	181
3.2	672	52 65	78 91	104 985	55 68	82 9	96 110	1370	58 72	87 102	2 117 18	20 62	77 93	8 108 1	.24 233	66 0	82 9	9 116	133 29	900 71	L 89	107 124	143	3550 77	96 11	5 134 154	4 4250	82 102	123 143	164 50	040 85	106 128	3 149 172	2 5720	89 11	11 134	156 179	6460	96 120	144 168	193
3.4	620	55 69	83 96	111 911	58 73	87 1	LO2 117	1270	62 77	93 108	8 124 16	90 66	82 99) 115 1	.32 217	'0 70	88 1	06 123	141 27	700 76	5 94	113 132	152	3300 82	102 12	2 143 164	4 3970	87 108	130 152	174 4	700 91	113 136	5 159 182	2 5350	95 11	142	166 191	6050	102 127	' 153 179	205
3.6	572	58 73	88 102	117 845	62 77	93 1	124	1180	65 81	98 115	5 132 15	70 70	87 10	5 122 1	40 202	.0 74	93 1	12 130	150 25	520 80) 100	120 140	161	3090 86	108 13	0 151 174	4 3710	92 114	138 161	185 44	400 96	120 144	168 193	3 5010	100 12	25 151	176 202	5680	108 134	162 189	217
3.8	530	62 77	92 108	124 784	65 81	98 1	14 131	1100	69 86	104 122	1 139 14	70 74	92 11	0 129 1	48 189	0 79	98 1	18 138	158 23	360 84	105	127 148	170	2890 91	114 13	7 160 18	3 3480	97 121	146 170	195 43	140 101	126 152	2 177 204	4 4710	106 13	32 159	186 213	5350	114 142	171 200	229
4	490	65 81	97 114	130 729	69 85	103 1	138	1030	73 91	109 127	7 146 13	70 77	96 11	6 135 1	.56 177	0 83	103 1	24 145	166 22	220 89) 111	133 156	179	2720 96	120 14	4 168 193	3 3270	102 127	153 179	205 38	390 107	133 160) 187 214	4 4450	112 13	39 167	195 224	5050	120 149	180 210	241
4.2	453	68 85 1	LO2 119	137 678	72 90	108 1	145	955	76 95	115 134	4 153 12	80 81	101 12	2 142 1	.63 166	60 87	108 1	30 152	175 20	080 93	3 116	140 163	188	2560 101	125 15	1 176 203	3 3080	107 134	161 188	216 30	570 112	139 168	3 196 22	5 4200	117 14	46 176	205 236	4780	126 157	189 221	253
4.4	418	71 89 1	LO7 125	143 630	75 94	113 1	152	893	80 100	0 120 140	0 161 12	00 85	106 12	8 149 1	.71 156	0 91	113 1	37 159	183 19	960 98	3 122	147 171	197	2410 106	131 15	8 185 212	2 2910	112 140	169 197	226 34	470 117	146 176	5 205 230	5 3980	123 15	33 184	215 247	4540	132 164	198 231	265
4.6	384	75 93 1	12 131	150 585	79 98	118 1	L38 159	834	84 104	4 125 146	5 168 11	30 89	111 13	4 156 1	.79 147	'0 95	118 1	43 167	191 18	350 10	2 127	153 179	205	2280 110	137 16	6 193 222	2 2750	117 146	176 206	236 32	290 123	153 184	215 24	7 3770	128 16	50 193	225 258	4310	138 172	207 242	277
4.8	349	78 97 1	17 136	156 542	82 102	123 1	L44 165	779	87 109	9 131 153	3 175 10	60 93	116 13	9 163 1	.87 139	0 99	124 1	49 174	200 17	750 10	7 133	160 187	214	2160 115	143 17	3 202 232	2 2610	123 153	184 214	246 32	120 128	159 192	2 224 25	7 3590	134 16	201 7ز	234 269	4100	144 179	216 252	289
5	314	81 101 1	142	163 499	86 107	129 1	172	727	91 113	3 136 159	9 183 99	97 97	120 14	5 169 1	.95 131	.0 103	3 129 1	55 181	208 16	550 11	1 138	167 194	223	2040 120	149 18	0 210 24	1 2470	128 159	191 223	257 29	960 133	166 200) 233 268	3 3410	140 17	/4 209	244 280	3910	150 187	225 263	302
5.2	284	84 105 1	148	169 457	89 111	134 1	179	676	95 118	3 142 165	5 190 92	.9 101	125 15	1 176 2	202 123	0 108	3 134 1	61 188	216 15	560 11	6 144	173 202	232	1930 125	155 18	7 218 25	1 2350	133 165	199 232	267 28	320 139	173 208	3 243 279	9 3250	145 18	31 218	254 292	3740	156 194	234 273	314
5.4	258	88 109 1	153	176 420	93 115	139 1	L62 186	627	98 122	2 147 172	2 197 87	'0 105	130 15	7 183 2	210 116	50 112	2 139 1	68 196	225 14	480 12	0 149	180 210	241	1830 130	161 19	4 227 26	0 2230	138 172	207 241	277 20	580 144	179 216	5 252 289	9 3110	151 18	38 226	264 303	3570	162 202	243 284	326
5.6	236	91 113 1	L36 159	183 387	96 120	144 1	L68 193	582	102 127	7 153 178	8 205 81	.3 108	135 16	3 190 2	18 109	0 116	5 144 1	74 203	233 13	390 12	4 155	187 218	250	1740 134	167 20	2 235 270	0 2120	143 178	214 250	287 2	550 149	186 224	261 300	2970	156 19	J5 234	273 314	3420	168 209	252 294	338
5.8	216	94 117 1	41 165	189 358	99 124	149 1	174 200	542	105 131	l 158 185	5 212 76	51 112	140 16	8 196 2	26 103	0 120) 149 1	80 210	241 13	320 12	9 160	193 226	259	1650 139	173 20	9 244 28	0 2010	148 184	222 259	298 24	430 155	193 232	2 271 31	1 2840	162 20)2 243	283 325	3280	174 217	261 305	350
6	199	97 121 1	L46 170	196 332	103 128	154 1	L80 207	506	109 136	5 164 192	1 219 71	.3 116	145 17	4 203 2	233 96	5 124	155 1	86 217	250 12	250 13	3 166	200 233	268	1560 144	179 21	6 252 28	9 1920	153 191	230 268	308 23	320 160	199 240) 280 322	2 2710	167 20)8 251	293 337	3150	180 224	270 315	362
6.2	184	101 125 1	176	202 308	106 132	159 1	186 214	472	113 140) 169 197	7 227 66	59 120	149 18	0 210 2	241 90	9 128	3 160 1	92 224	258 11	L80 13	8 172	207 241	277	1480 149	185 22	.3 260 299	9 1820	158 197	237 277	318 22	210 165	206 248	3 289 332	2 2600	173 21	15 260	303 348	3020	186 232	279 326	374
6.4	170	104 129 1	182	209 287	110 137	165 1	192 221	442	116 145	5 175 204	4 234 62	.8 124	154 18	6 217 2	49 85	7 132	2 165 1	99 232	266 11	110 14	2 177	213 249	286	1400 154	191 23	0 269 30	9 1730	163 203	245 286	328 23	110 171	212 256	5 299 343	3 2490	179 22	22 268	313 359	2910	192 239	288 336	386
6.6	157	107 133 1	L61 187	215 267	113 141	170 1	198 227	413	120 149	9 180 210	0 241 59	0 128	159 19	2 224 2	257 80	8 137	7 170 2	05 239	274 10	050 14	7 183	220 257	295	1330 158	197 23	8 277 31	8 1650	169 210	253 295	339 20	010 176	219 264	1 308 354	4 2380	184 22	29 276	322 370	2790	198 247	297 347	398
6.8	146	110 137 1	L65 193	222 248	117 145	175 2	204 234	386	124 154	4 185 216	5 249 55	53 132	164 19	7 230 2	265 76	1 141	175 2	11 246	283 9	90 15	1 188	227 264	304	1260 163	203 24	5 286 328	8 1560	174 216	260 304	349 19	910 181	226 272	2 317 364	4 2280	190 23	36 285	332 381	2690	204 254	306 357	410
7	135	114 141 1	199	228 231	120 149	180 2	210 241	360	127 158	3 191 223	3 256 51	.8 135	169 20	3 237 2	72 71	6 145	5 180 2	17 253	291 9	33 15	6 194	233 272	313	1190 168	209 25	2 294 33	8 1480	179 223	268 313	359 18	320 187	232 280) 327 37	5 2180	195 24	43 293	342 393	2580	210 261	315 368	422
7.2	125	117 145 1	204	235 214	123 154	185 2	216 248	336	131 163	3 196 229	9 263 48	85 139	173 20	9 244 2	80 67	2 149) 185 2	23 261	299 8	78 16	0 199	240 280	322	1120 173	215 25	9 302 34	7 1400	184 229	276 322	369 1	720 192	239 288	3 336 380	5 2070	201 25	301 ا	352 404	2470	216 269	324 378	434
7.4	115	120 149 1	80 210	241 198	127 158	190 2	222 255	312	135 168	3 202 235	5 270 45	51 143	178 21	5 251 2	88 62	8 153	3 191 2	30 268	308 8	22 16	4 205	247 288	331	1060 178	221 26	6 311 35	7 1320	189 235	283 331	380 10	530 197	246 296	5 345 397	7 1970	207 25	310 7ز	361 415	2350	222 276	333 389	446
7.6	105	123 153 1	85 216	248 182	130 162	195 2	228 262	287	138 172	2 207 242	2 278 41	.7 147	183 22	1 257 2	96 58	3 157	7 196 2	36 275	316 7	65 16	9 210	253 296	339	980 182	227 27	4 319 36	7 1230	194 242	291 340	390 1	530 203	252 304	355 40	7 1850	212 26	318 كز	371 426	2230	228 284	342 399	458
7.8	94	126 157 1	190 221	254 164	134 166	201 2	234 269	261	142 177	7 213 248	3 285 38	80 151	188 22	6 264 3	303 53	3 161	201 2	42 282	324 7	01 17	3 216	260 303	348	901 187	233 28	1 328 37	6 1140	199 248	299 349	400 14	410 208	259 312	2 364 418	3 1720	218 27	/1 327	381 438	2090	234 291	. 351 410	470
8	76	130 162 1	195 227	261 134	137 171	206 2	240 276	214	145 181	1 218 255	5 292 31	.4 155	193 23	2 271 3	811 44	4 166	5 206 2	48 290	333 5	87 17	8 221	267 311	357	758 192	239 28	8 336 38	6 960	204 254	306 357	411 12	200 213	266 320) 373 429	9 1480	223 27	/8 335	391 449		240 299	360 420	482

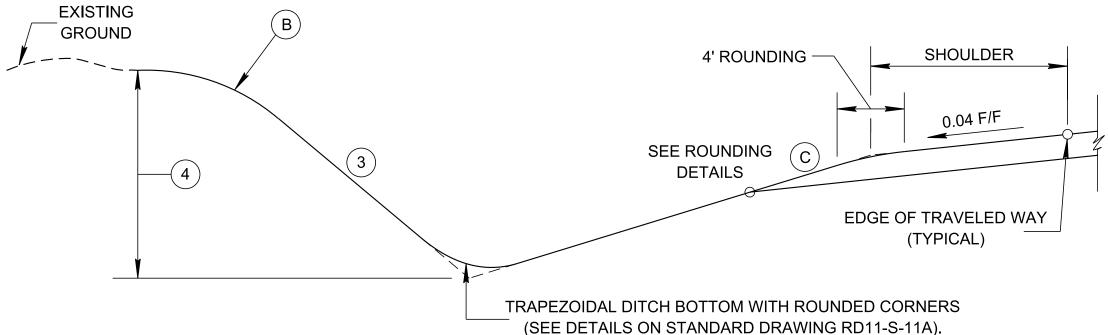
(1) SEE STANDARD DRAWING RD11-SE-1 FOR EQUATIONS, LEGEND AND GENERAL NOTES. TABLES ARE BASED ON MINIMUM RADII, SUPERELEVATION, SPEED AND NUMBER OF LANES ROTATED.

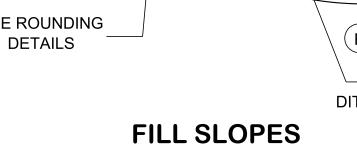
DESIGN RUNOFF LENGTHS (L_R) (1)

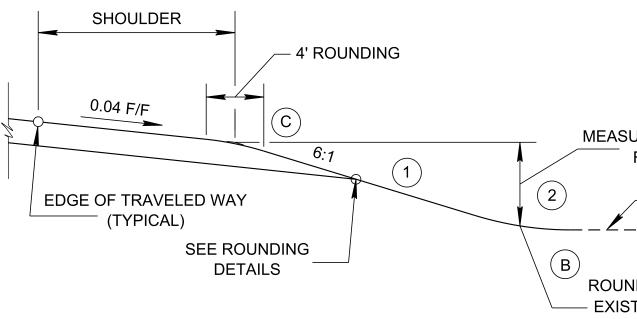

E MAX = 0.08 DESIRABLE

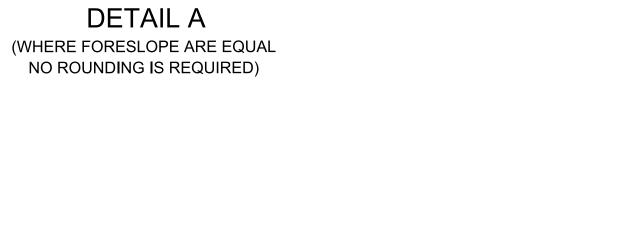
DESIGN NOTES

2 SPIRALS ARE RECOMMENDED FOR DESIGN SPEED OF 50 MPH OR GREATER AND DESIGN SUPERELEVATION OF 3 PERCENT OR GREATER.



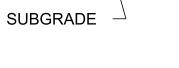

3 TABLE VALUES ARE FOR MINIMUM RADIUS OF CURVE AND SUPERELEVATION RUNOFF LENGTH. SEE STANDARD DRAWING RD11-SE-1 FOR EQUATIONS TO CALCULATE TANGENT RUNOUT LENGTH AND TOTAL TRANSITION LENGTH.





NO ROUNDING

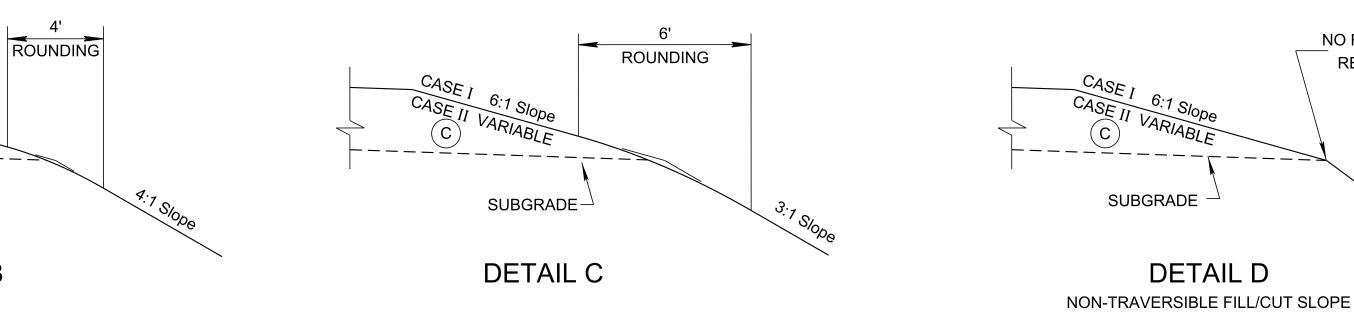
REQUIRED


6:1

CASE 1 6:1 Slope

SUBGRADE-

CASE II VARIABLE



6:1 Slope

CASEI

(c)

CASE II VARIABLE

ROUNDING DETAILS

CASE I (6:1 FORESLOPE IS SHOWN)

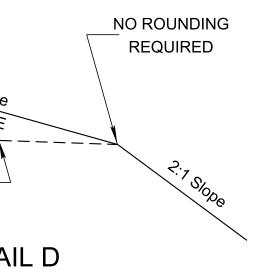
	GENERAL SI	OPE TABLE	A
CAS	SE I	CASE	II
FILL SLOPES 1	HEIGHT OF FILL 2	FILL SLOPES (1)	HEIGHT OF FILL 2
6:1	0'-7'	4:1	0'-6'
4:1	7'-15'	3:1	6'-8'
3:1	15'-28'	2:1	8'-12'
2:1	OVER 28'	1.5:1	OVER 12'
CUT SLOPES 3	DEPTH OF CUT 4	CUT SLOPES 3	DEPTH OF CUT 4
4:1	0'-15'	4:1	0'-6'
3:1	15'-20'	3:1	6'-8'
2:1	OVER 20'	2:1	8'-12'
NA	NA	1.5:1	OVER 12'

- CASE I: FOR ALL FREEWAYS AND ARTERIALS. ALSO FOR COLLECTORS
- **CASE II :** FOR LOCAL ROADS AND STREETS AND COLLECTORS (STANDARD DRAWINGS RD11-TS-1, 1A, & 2).

SPECIAL NOTE

ROUNDING AND ROADSIDE SLOPE DETAILS SHOWN ON THIS SHEET ARE APPLICABLE TO OUTSIDE SHOULDER ONLY, ON PROJECTS AS DESCRIBED IN CASE I AND CASE II ABOVE. FOR DETAILS OF INSIDE SHOULDERS ON MULTI-LANE ROADWAYS, SEE APPROPRIATE STANDARD DRAWINGS.

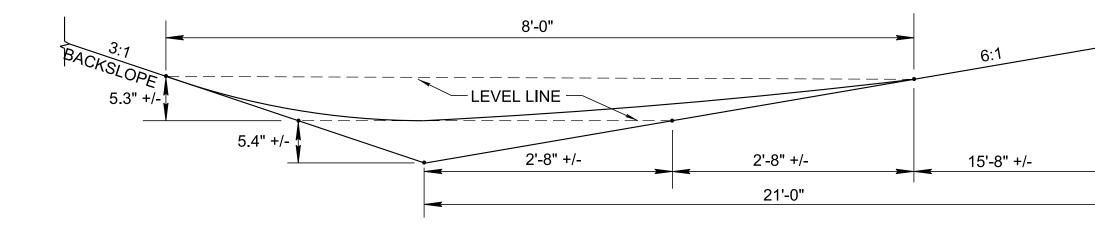
DESIGN NOTES FILL AND/OR CUT SLOPE RATIOS SHALL BE RECOMMENDED OR APPROVED BY THE MATERIALS AND TEST, GEOTECHNICAL ENGINEERING SECTION. SEE RD11-S-11B FOR ROCK CUT SLOPE AND CATCHMENT DETAILS. (B) SLOPES AT THE TOE OF FILLS AND TOP OF CUTS SHALL BE ROUNDED TO BLEND INTO THE EXISTING TERRAIN.

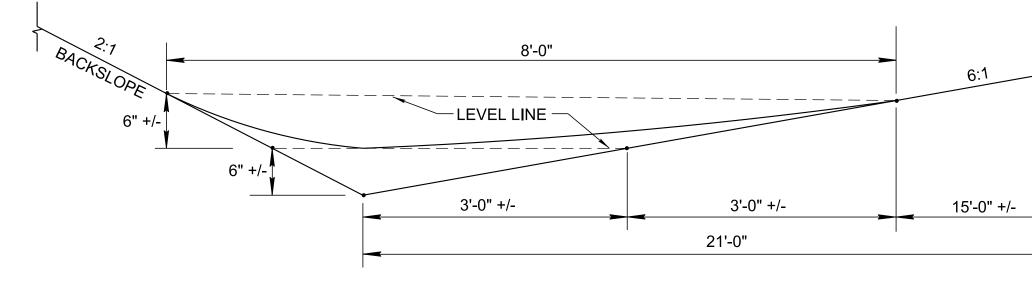

(C) SEE APPROPRIATE RD11-TS SERIES DRAWING FOR FORESLOPE.

(A)

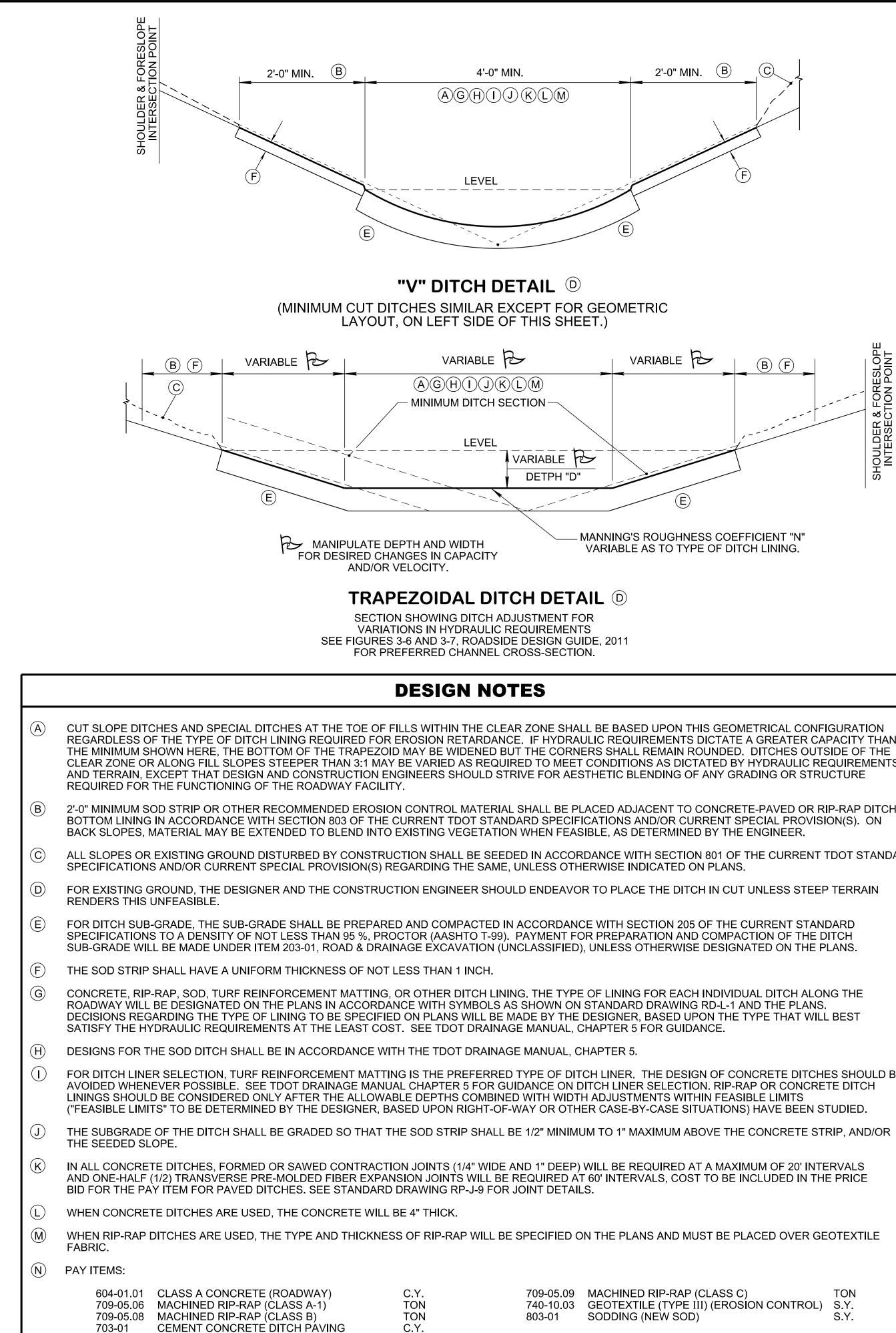
MEASURED FROM SHOULDER FINISHED GRADE


EXISTING GROUND


ROUNDING TO BLEND INTO - EXISTING GROUND WHEN DITCH NOT REQUIRED FOR DRAINAGE.



WITH A POSTED SPEED OF 45 MILES PER HOUR OR GREATER.



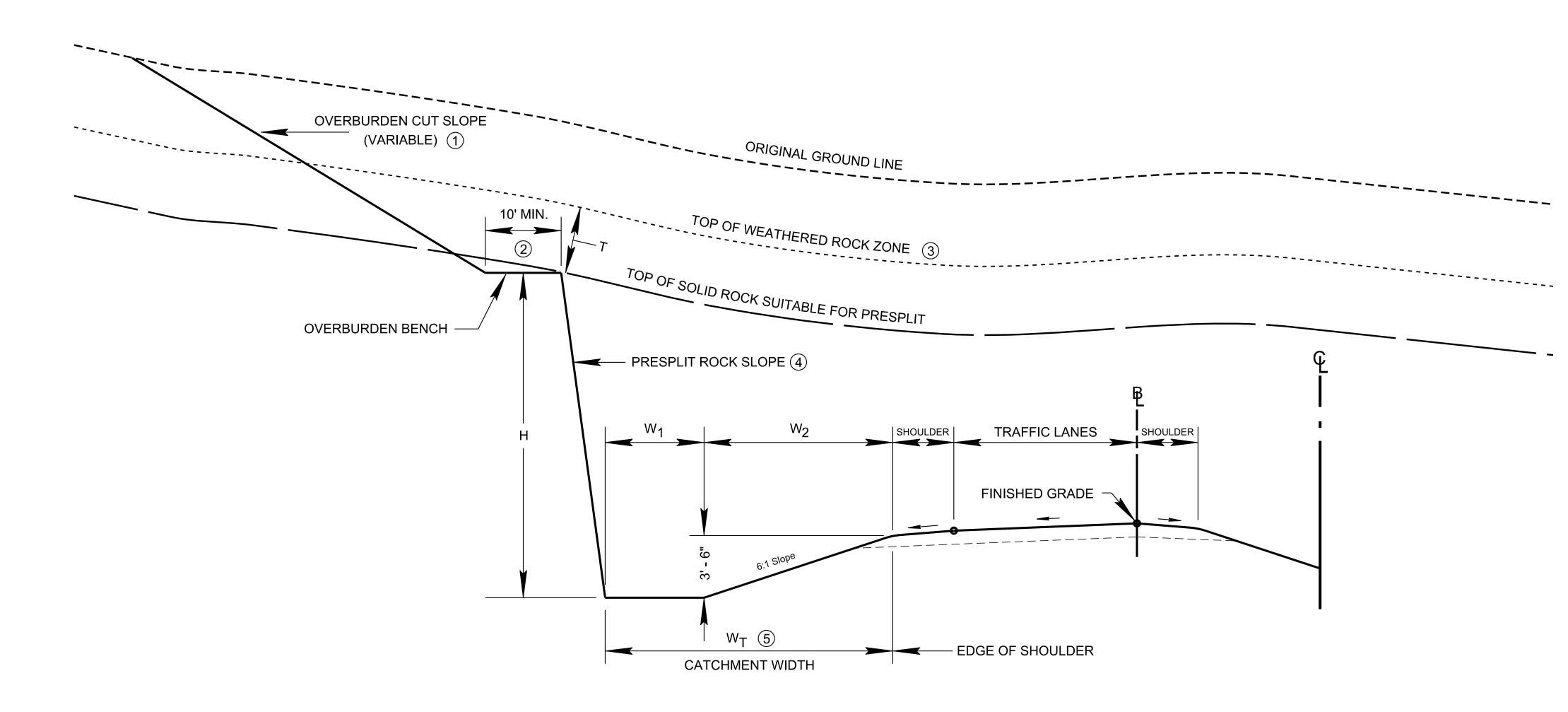
TRAVERSABLE DITCH ROUNDING DETAILS

FOR ROADSIDE DITCHES LOCATED INSIDE CLEAR ZONE (DIMENSIONED FOR FIELD LAYOUT)

& FORE TION P(

DER

FORE ON PO


∞Ĕ

RO

SECTION PC

PON THIS GEOMETRICAL CONFIGURATION MENTS DICTATE A GREATER CAPACITY THAN MAIN ROUNDED. DITCHES OUTSIDE OF THE AS DICTATED BY HYDRAULIC REQUIREMENTS DING OF ANY GRADING OR STRUCTURE
INT TO CONCRETE-PAVED OR RIP-RAP DITCH OR CURRENT SPECIAL PROVISION(S). ON RMINED BY THE ENGINEER.
SECTION 801 OF THE CURRENT TDOT STANDARD ATED ON PLANS.
HE DITCH IN CUT UNLESS STEEP TERRAIN
ON 205 OF THE CURRENT STANDARD ON AND COMPACTION OF THE DITCH ERWISE DESIGNATED ON THE PLANS.
R EACH INDIVIDUAL DITCH ALONG THE RAWING RD-L-1 AND THE PLANS. SED UPON THE TYPE THAT WILL BEST R GUIDANCE.
E DESIGN OF CONCRETE DITCHES SHOULD BE ELECTION. RIP-RAP OR CONCRETE DITCH TS WITHIN FEASIBLE LIMITS ASE SITUATIONS) HAVE BEEN STUDIED.
MUM ABOVE THE CONCRETE STRIP, AND/OR
IRED AT A MAXIMUM OF 20' INTERVALS S, COST TO BE INCLUDED IN THE PRICE
AND MUST BE PLACED OVER GEOTEXTILE

DESIGN NOTES
1 SEE GEOTECHNICAL REPORT FOR ALLOWABLE OVERBURDEN CUT SLOPE RECOMMENDATIONS.
(2) OVERBURDEN BENCH TO BE MINIMUM OF 10' WIDE AS SPECIFIED IN GEOTECHNICAL REPORT. NO INTERMEDIATE BENCHES ARE TO RECOMMENDED IN THE REPORT.
(3) TOP OF WEATHERED ROCK ZONE (HENCE, THE THICKNESS -T) WILL BE VARIABLE. GEOTECHNICAL REPORT WILL PROVIDE PROJECT ON THICKNESS TO USE IN THE CROSS-SECTION DEVELOPMENT. THIS ZONE MAY CONTAIN ROCK PINNACLES, ROCK LENSES, OR WE MIXED WITH SOIL. BLASTING MAY BE REQUIRED TO REMOVE. CONSIDER EXCAVATION ITEM IN THIS ZONE TO BE UNCLASSIFIED, CO
(4) PRESPLIT SLOPE TO BE PROVIDED FOR SPECIFIC ROCK CUT INTERVALS IN GEOTECHNICAL REPORT. IT IS ASSUMED PRESPLIT FAC OR SCALED OF LOOSE ROCKS AND OVERHANGS IN ACCORDANCE WITH TDOT STANDARD SPECIFICATIONS.
5 W _T IS HORIZONTAL DISTANCE FROM SHOULDER (MID-POINT OF SLOPE ROUNDING) TO BASE OF PRESPLIT ROCK SLOPE. W _T WILL B GREATER IN ALL CASES. FOR ALL FORESLOPES OTHER THAN 6:1, SEE GEOTECHNICAL REPORT.

dg.

ROCK CUT SLOPE AND CATCHMENT DETAILS

PRESPLIT ROCK CUT SLOPE TABLE					
Н	VER	ΓICAL		PING R FLATTER	
(FT)	W _T (FT) ⑤	W ₁ (FT)	W _T (FT)	W ₁ (FT)	
0 - 40	21	0	21	0	
40 - 50	21	0	27	6	
50 - 60	24	3	33	12	
60 - 70	28	7	37	16	
70 - 80	32	11	41	20	
80 - 120	36	15	45	24	
120 - 160	40	19	51	30	
160 - 200	52	31	63	42	

BE USED UNLESS

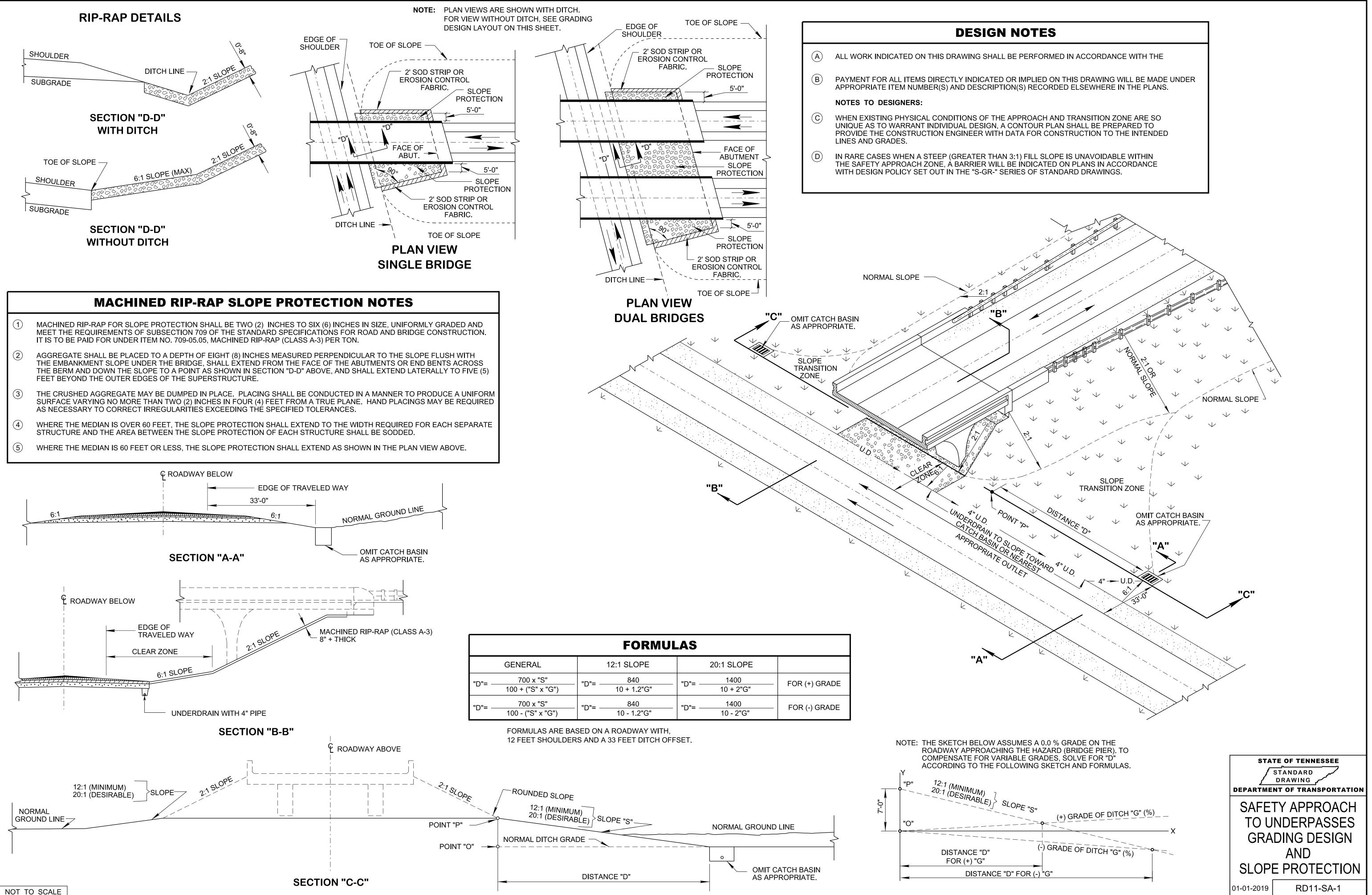
T SPECIFIC GUIDANCE EATHERED ROCK DMMON.

CES WILL BE FORMED

BE 21 FEET OR

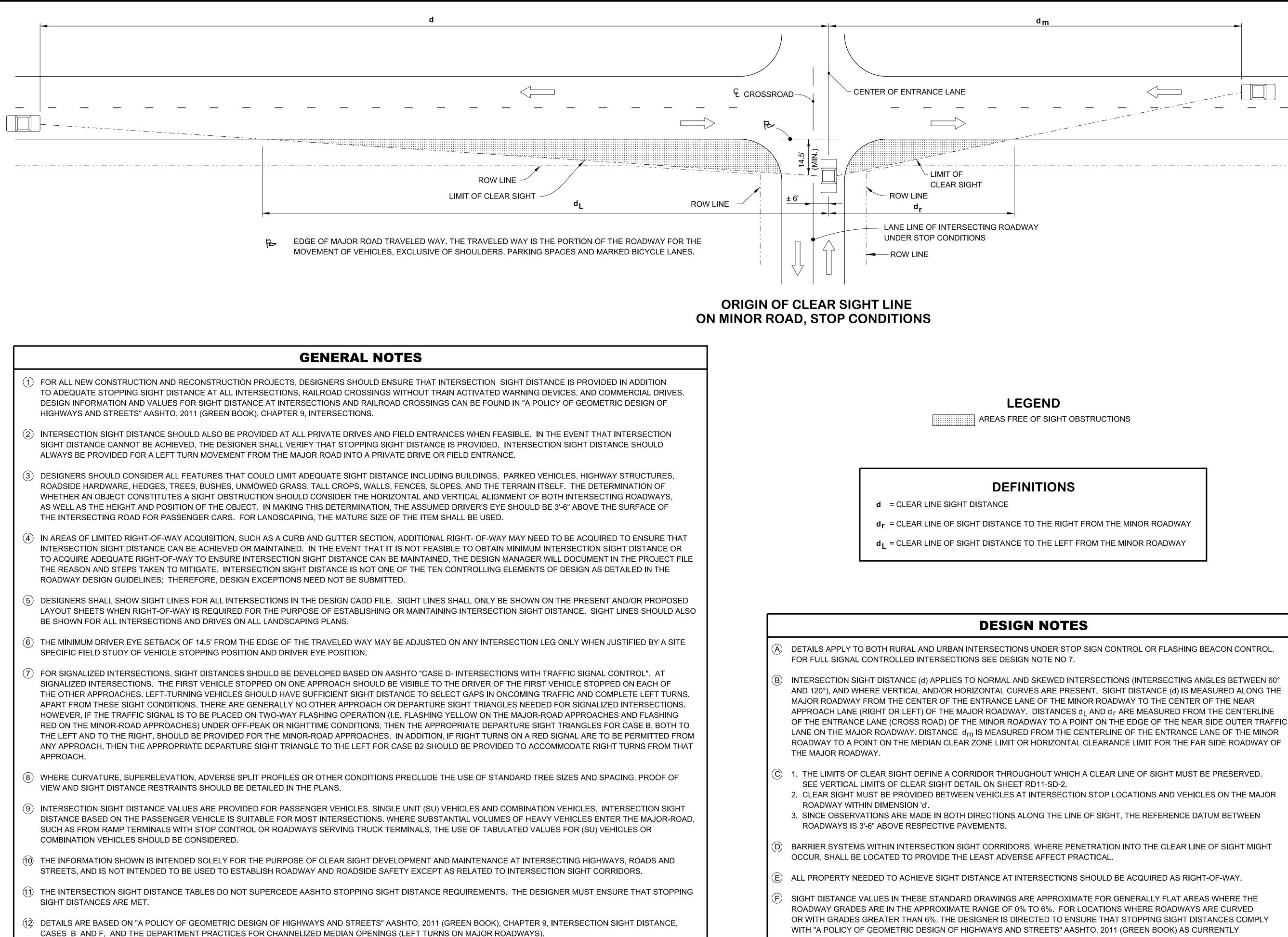
(B) A UNIFORM CATCHMENT WIDTH (W_T) BASED ON THE HIGHEST ROCK CUT SLOPE (H), SHOULD BE USED.

ENGINEERING SECTION OR GEOTECHNICAL CONSULTANT FOR GUIDANCE.

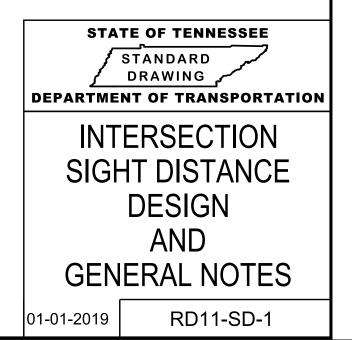

© FOR LONG CUT SLOPES WHERE A PREDOMINANT CUT HEIGHT EXISTS FOR SEVERAL STATIONS, UTILIZE W_T FOR THAT GIVEN CUT HEIGHT (H). TRANSITION TO VARIOUS CATCHMENT WIDTHS ON A RATIO NO GREATER THAN 4 FEET HORIZONTAL W_T PER 100 FOOT STATION INTERVAL.

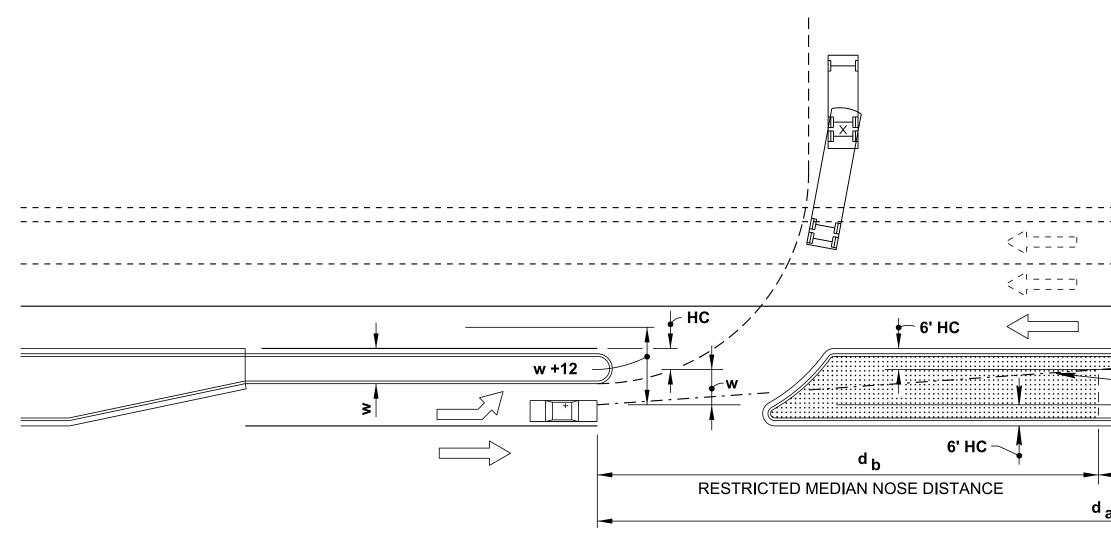
GENERAL NOTES

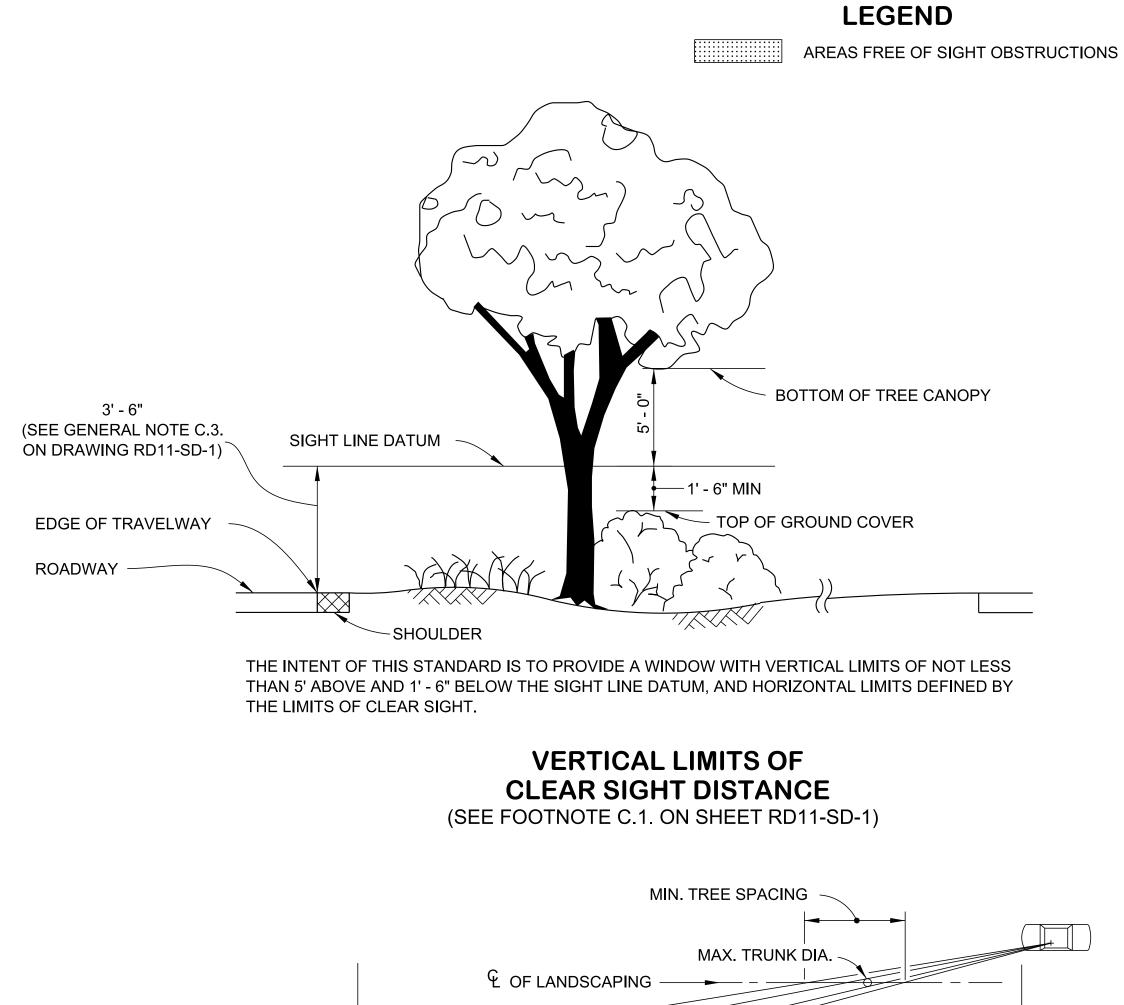
(A) IF W_T CANNOT BE ACHIEVED DUE TO RIGHT-OF-WAY RESTRICTIONS OR EXCESSIVE EXCAVATION, THEN A COMBINATION OF A NARROWER ROCKFALL DITCH (W1), ROCKFALL CATCHMENT FENCE OR BARRIER, OR ROCKSLOPE MESHING WILL BE REQUIRED. CONTACT GEOTECHNICAL


(Replaced Std Dwg RD01-S-11B)

ັດ


NOT TO SCALE


	FORMUL	.AS	
GENERAL	12:1 SLOPE	20:1 SLOPE	
700 x "S"	"D"= <u>840</u>	"D"= <u>1400</u>	FOR (+) GRADE
100 + ("S" x "G")	10 + 1.2"G"	10 + 2"G"	
700 x "S"	"D"= <u>840</u>	"D"= <u>1400</u>	FOR (-) GRADE
100 - ("S" x "G")	10 - 1.2"G"	10 - 2"G"	


дg

- (E) ALL PROPERTY NEEDED TO ACHIEVE SIGHT DISTANCE AT INTERSECTIONS SHOULD BE ACQUIRED AS RIGHT-OF-WAY.
- (F) SIGHT DISTANCE VALUES IN THESE STANDARD DRAWINGS ARE APPROXIMATE FOR GENERALLY FLAT AREAS WHERE THE ROADWAY GRADES ARE IN THE APPROXIMATE RANGE OF 0% TO 6%. FOR LOCATIONS WHERE ROADWAYS ARE CURVED OR WITH GRADES GREATER THAN 6%. THE DESIGNER IS DIRECTED TO ENSURE THAT STOPPING SIGHT DISTANCES COMPLY WITH "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK) AS CURRENTLY ADOPTED BY TDOT.

CHANNELIZED DIRECTIONAL MEDIAN OPENINGS

- 6' SHADOW

HORIZONTAL LIMITS OF CLEAR SIGHT DISTANCE

σ

NOT TO SCALE

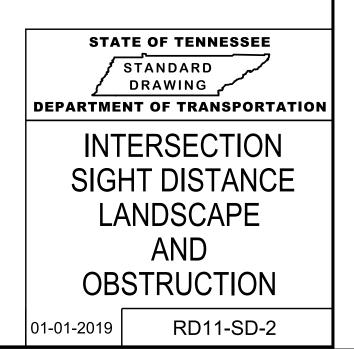
	da	(CLEAF	R LINE SI	GHT DIS	STANCE	IN FEET	-)		
POSTED SPEED	С	1 LANE ROSSE		С	2 LANE ROSSE		C	3 LANE ROSSE	
(M.P.H.)	Р	SU	COMB.	Р	SU	COMB.	Р	SU	COMB.
30	245	290	335	265	320	365	290	350	395
35	285	335	390	310	370	425	335	410	460
40	325	385	445	355	425	485	385	465	525
45	365	430	500	400	480	545	430	525	590

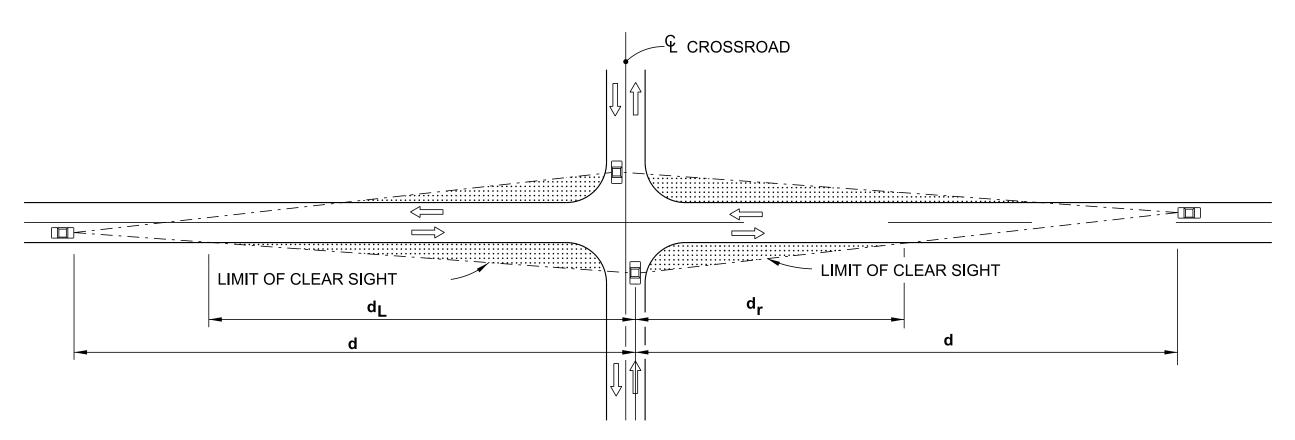
THE **d**_a VALUES IN THE TABLE ARE APPLICABLE TO URBAN, PREDOMINANTLY CURBED ROADWAYS WITH DESIGN SPEEDS OF 45 MPH OR LESS AND ARE BASED ON

, CHAPTER 9, INTERSECTION SIGHT DISTANCE, CASES B AND F, AND THE DEPARTMENT PRACTICES FOR CHANNELIZED MEDIAN OPENINGS (LEFT TURNS ON MAJOR ROADWAYS). FOR HORIZONTAL CLEARANCE (HC) OF SIX FEET (6'), THE VALUES FOR d_b MAY BE DETERMINED BY THE EQUATION $d_b = d_a$ (w/(w+12)). FOR ROADWAYS WITH NONRESTRICTED CONDITIONS, d_a AND d_b SHOULD BE BASED ON THE GEOMETRY FOR THE LEFT TURN STORAGE AND ON CLEAR ZONE WIDTHS. THE **w** IS THE MEDIAN WIDTH.

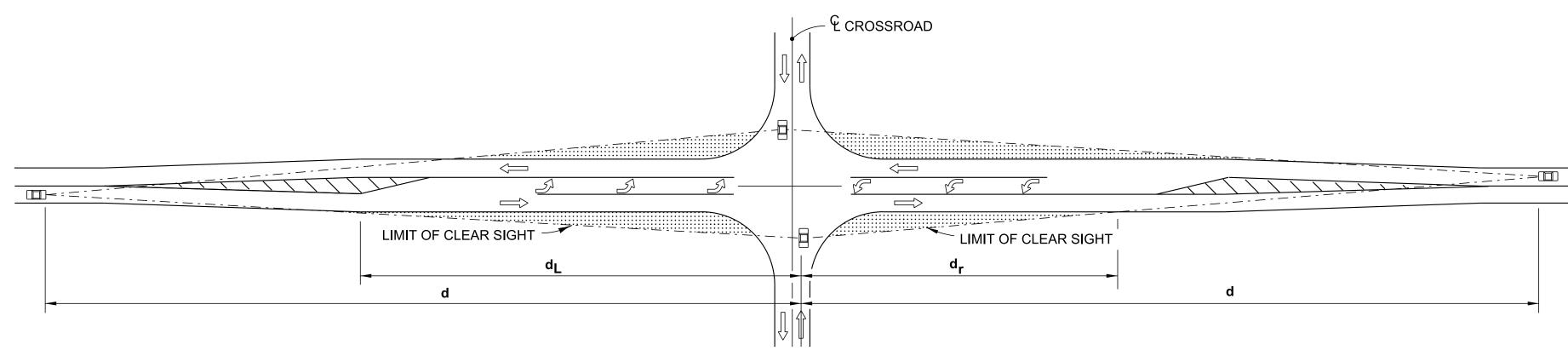
P = PASSENGER VEHICLE, SU = SINGLE UNIT TRUCK, COMB. = COMBINATION

	+
LIMIT OF CLEAR SIGHT	_ <u> </u>
LIMIT OF MEDIAN SIGHT OBSTRUCTION a	

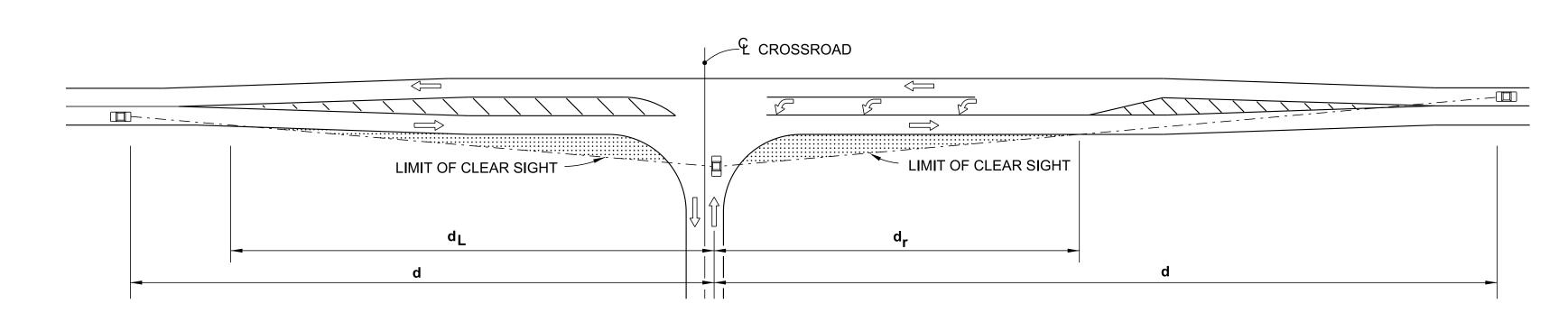

	CLEAI	R SIGH	T DESI	GN NC	DTES			
E CORRIDOR DEFINED BY THE LIMI DADWAY AND VEHICLES ON THE MA IN THE ENGINEER'S JUDGEMENT, LA E ENGINEER MAY REARRANGE, REI FOLLOWS:	JOR ROADWAY SH NDSCAPING INTE	IOULD BE AE RFERES WIT	ELE TO SEE E	EACH OTHEI OF SIGHT C	R CLEARLY 1 ORRIDOR PF	THROUGHOU RESCRIBED I	IT THE LIMIT BY THESE S ⁻	'S OF 'd' ANI TANDARDS
GROUND COVER & TRUNKED PLAN GROUND COVERS - PLANT SEL THAN 18" BELOW THE SIGHT LI THE SIGHT LINE DATUM WILL A	ECTION OF LOW ONE DATUM FOR O	BROWING VE	GETATION V /ER IN COME					
TRUNKED PLANTS - PLANT SELECT HIGH BORNE FOLIAGE SHALL N CLOSER THAN 20'.								
TREES:								
WHERE LEFT TURNS FROM THI	E MAJOR ROAD AF	RE PERMITTE	D , NO TREE	ES SHALL BE			DISTANCE 'd	, b'
WHERE LEFT TURN LANES ARE	PRESENT, THE F	OLLOWING F	REQUIREMEN	ITS APPLY F		M DISTANCE	:	
(A)FOR LOW SPEED FACILIT NO TREES SHALL BE PER (B)FOR HIGH SPEEDS FACIL RESTRICTED MEDIAN NO	MITTED WITHIN 10	00' OF THE R EED 50 M.P.H	ESTRICTED	MEDIAN NO ER) NO TRE	SE (MEASUF ES SHALL B	RED FROM TH	HE EDGE OF D WITHIN 20	PAVEMEN
TREES CAN BE USED WITH LAV APPROVED MATERIAL. THE CL HEIGHT REQUIREMENTS LISTE VALUES:	EAR SIGHT WINDO	OW MUST BE	IN CONFOR	MANCE WIT	H THE 'WIND	OW DETAIL'	MODIFIED T	O ATTAIN 1
DESIGN SPEED	(MPH)	30	35	40	45	50	55	60
	4" ≤ Ø ≤ 11"	22	27	33	40	45	52	
MINIMUM SPACING (FT) (Center to Center of Trunk)								60


AL MEDIAN OPENINGS

NG ND 'd_a'. CTIONS


ΓΜΕΝΤ ΉE ULAR

OTE NO. 8.



2 LANE UNDIVIDED ROADWAY - SYMMETRICAL

FLARED FOR OPPOSING LEFT TURN CENTERED ON ALIGNMENT - 2 LANE 2 WAY

FLARED FOR SINGLE SIDE LEFT TURN CENTERED ON ALIGNMENT - 2 LANE 2 WAY

LEGEND AREAS FREE OF SIGHT OBSTRUCTIONS

dg.

0101

19

Δ

S

Δ

Criteria\RD

Design

рц

Se

a

Typic

2/13/2019 10:07:15 AM C:\Users\jj00547\Desktop\3 RD11

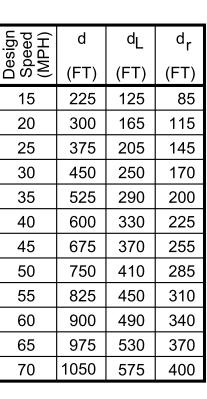
LLP

15	5	

NOTE: SEE RD11-SD-1 FOR INTERSECTING ROADWAY ORIGIN OF CLEAR SIGHT AND QUADRANT CORNER CLIPS.

				_
Design Speed (MPH)	d	٩	d _r	
Sp Sp	(FT)	(FT)	(FT)	(
15	170	120	75	
20	225	160	100	
25	280	195	125	
30	335	240	150	
35	390	275	175	
40	445	315	200	
45	500	350	225	
50	555	390	250	
55	610	430	275	
60	665	470	300	
65	720	510	325	
70	775	550	350	

d _r T)
т.
1)
95
25
60
90
20
50
80
10
45
75
05
40


SU VEHICLE

PASSENGER VEHICLE

2 LANE UNDIVIDED

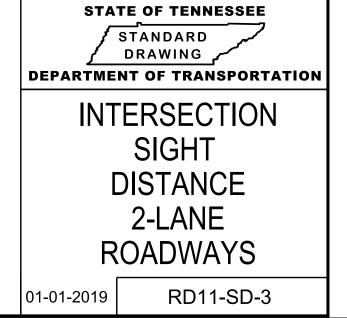
SIGHT DISTANCE (d) AND RELATED DISTANCES (dr, dL) (FEET)

				_
Design Speed (MPH)	d	ďL	d _r	
(Nig	(FT)	(FT)	(FT)	
15	180	100	70	
20	235	130	90	
25	295	165	115	
30	355	195	135	
35	415	225	155	
40	475	260	180	
45	530	290	200	
50	590	325	220	
55	650	355	245	
60	710	390	265	
65	765	420	290	
70	825	455	315	

PASSENGER VEHICLE

2 LANE 2 WAY - FLARED FOR LEFT TURNS

SIGHT DISTANCE (d) AND RELATED DISTANCES (dr, dL) (FEET)


SPECIAL NOTES

- (1) INTERSECTION SIGHT DISTANCE VALUES ARE PROVIDED FOR PASSENGER SHOULD BE CONSIDERED.
- (2)**RIGHT-OF-WAY LINE PLACEMENT.**

COMBINATION VEHICLE

VEHICLES, SINGLE UNIT (SU) VEHICLES AND COMBINATION VEHICLES. INTERSECTION SIGHT DISTANCE BASED ON THE PASSENGER VEHICLE IS SUITABLE FOR MOST INTERSECTIONS. WHERE SUBSTANTIAL VOLUMES OF HEAVY VEHICLES ENTER THE MAJOR-ROAD, SUCH AS FROM RAMP TERMINALS WITH STOP CONTROL OR ROADWAYS SERVING TRUCK TERMINALS, THE USE OF TABULATED VALUES FOR (SU) VEHICLES OR COMBINATION VEHICLES

ALL PROPERTY NEEDED TO ACHIEVE SIGHT DISTANCE AT INTERSECTIONS SHOULD BE ACQUIRED AS RIGHT-OF-WAY. SEE STD DWG RD11-SD-1 FOR

Design Speed (MPH)	d	dL	dr
Sp Sp	(FT)	(FT)	(FT)
15	255	180	115
20	340	240	155
25	425	300	190
30	510	360	225
35	595	420	265
40	680	480	305
45	765	540	340
50	850	605	380
55	930	660	415
60	1015	720	450
65	1100	780	490
70	1185	840	530

COMBINATION VEHICLE

ထီ ගි ළ) (FT) | (FT) | (FT)

15 270 150 105

20 | 360 | 200 | 140

25 | 450 | 250 | 170

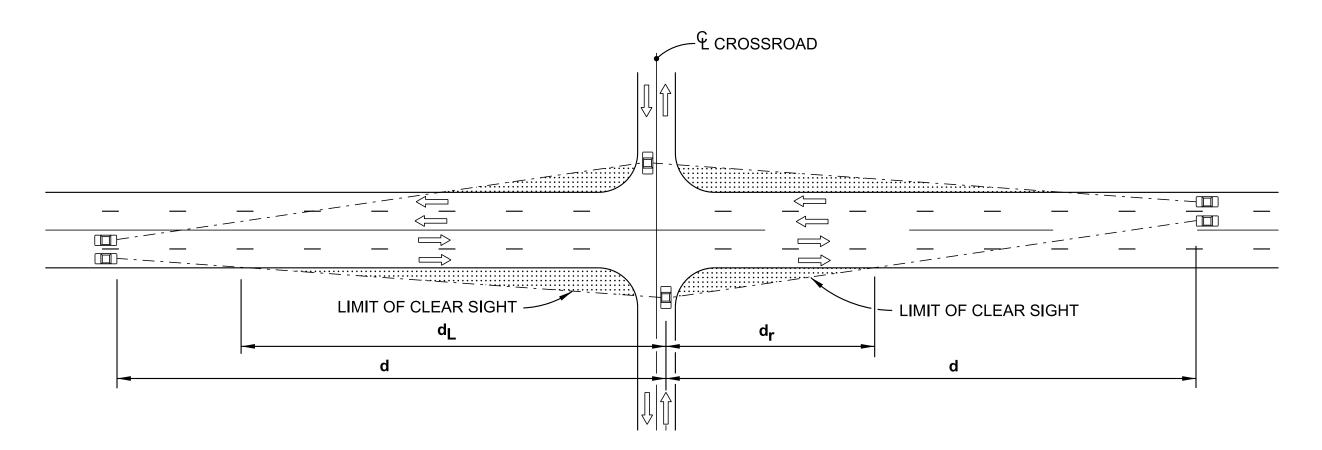
30 540 295 205

35 | 630 | 345 | 240

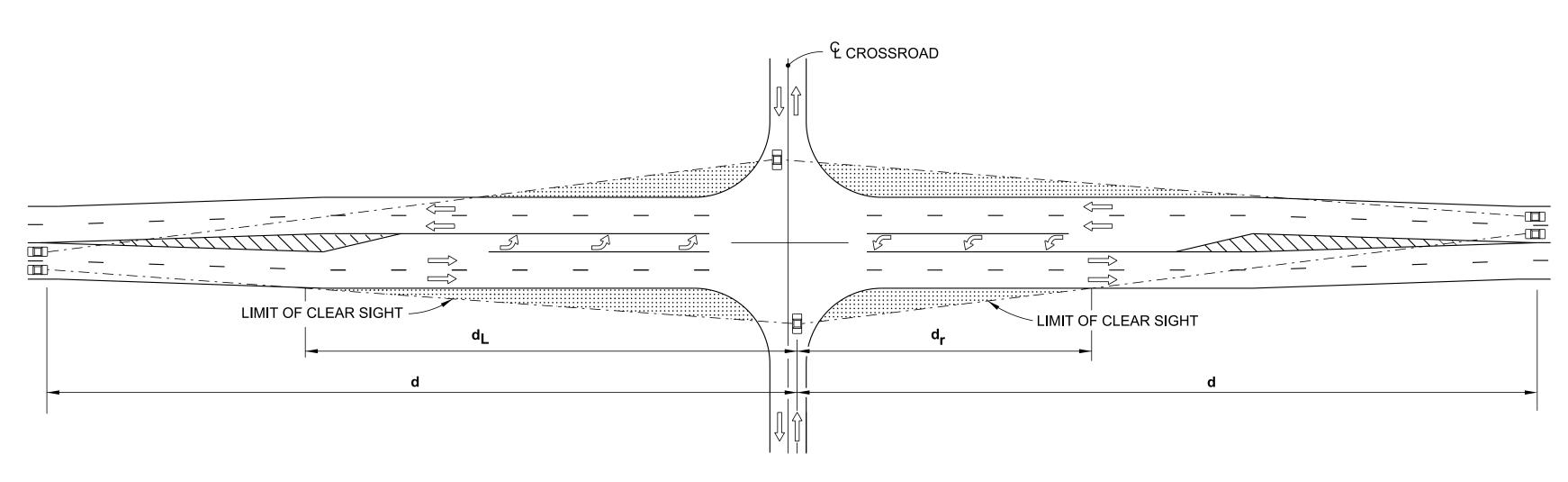
40 720 395 270

45 810 445 305

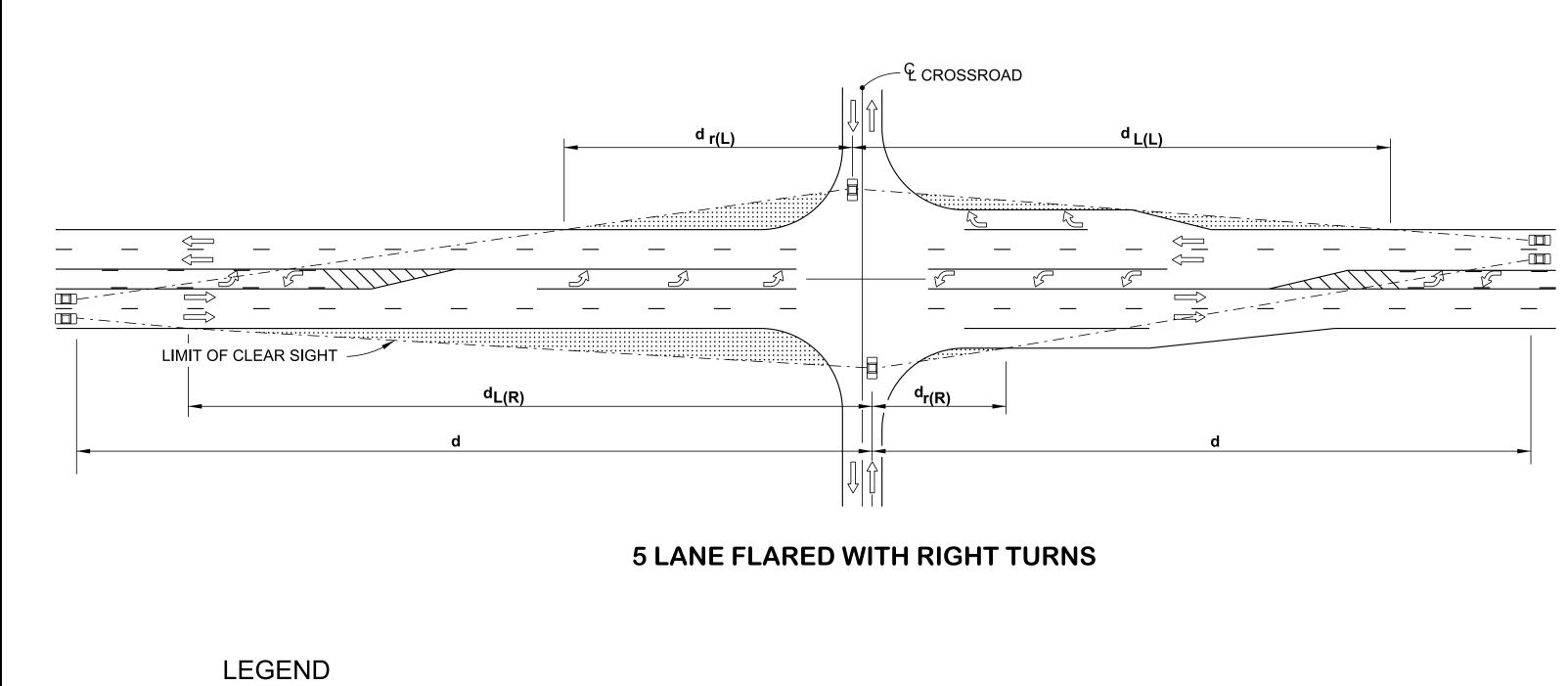
50 900 495 340


55 990 540 375

60 | 1080 | 590 | 405


65 | 1170 | 640 | 440

70 | 1260 | 690 | 475


REV. xx-xx-xx: TEXT

4 LANE UNDIVIDED FLARED - SYMMETRICAL

NOTE: SEE RD11-SD-1 FOR INTERSECTING ROADWAY ORIGIN OF CLEAR SIGHT AND QUADRANT CORNER CLIPS.

AREAS FREE OF SIGHT OBSTRUCTIONS

d g

01

ი

SD

SPECIAL NOTES

- INTERSECTION SIGHT DISTANCE VALUES ARE PROVIDED FOR PASSENGER VEHICLES, SINGLE UNIT (SU) VEHICLES AND COMBINATION VEHICLES. INTERSECTION SIGHT DISTANCE BASED ON THE PASSENGER VEHICLE IS SUITABLE FOR MOST INTERSECTIONS. WHERE SUBSTANTIAL VOLUMES OF HEAVY VEHICLES ENTER THE MAJOR-ROAD, SUCH AS FROM RAMP TERMINALS WITH STOP CONTROL OR ROADWAYS SERVING TRUCK TERMINALS, THE USE OF TABULATED VALUES FOR (SU) VEHICLES OR COMBINATION VEHICLES SHOULD BE CONSIDERED.
- (2)ALL PROPERTY NEEDED TO ACHIEVE SIGHT DISTANCE AT INTERSECTIONS SHOULD BE ACQUIRED AS RIGHT-OF-WAY. SEE STD DWG RD11-SD-1 FOR **RIGHT-OF-WAY LINE PLACEMENT.**

Design Speed (MPH)	d	dL	dr
(MI Sp	(FT)	(FT)	(FT)
30	355	250	115
35	415	295	135
40	475	335	155
45	530	375	175
50	590	420	195
55	650	460	215
60	710	500	230
65	765	545	250
70	825	585	270

				-
Design Speed (MPH)	d	dL	d _r	
Sp Ge	(FT)	(FT)	(FT)	
30	450	320	150	
35	525	375	170	
40	600	425	200	
45	675	480	220	
50	750	535	245	
55	825	585	270	
60	900	640	295	
65	975	690	320	
70	1050	745	345	

PASSENGER VEHICLE

ぶろ(FT) (FT) (FT) 30 375 205 125

> 440 240 145 500 275 165

565 310 185

625 345 205

690 380 225

750 415 245

35

40

45

50

55

60

COMBINATION VEHICLE SU VEHICLE

SIGHT DISTANCE (d) AND RELATED DISTANCES (dr, dL) (FEET)

4 LANE UNDIVIDED

Design Speed (MPH)	d	dL	dr
Design Speed (MPH)	(FT)	(FT)	(FT)
30	485	265	160
35	565	310	185
40	645	355	210
45	725	400	235
50	805	440	265
55	885	485	290
60	965	530	315
65	1045	570	340
70	1125	615	370

6581544526570880480285

PASSENGER VEHICLE SU VEHICLE

SIGHT DISTANCE (d) AND RELATED DISTANCES (dr, dL) (FEET)

4 LANE UNDIVIDED FLARED - SYMMETRICAL

	al	al	al	4	d "、				al	d , , , , ,	d
Design Speed (MPH)	d	^d L(R)	^d r (R)	^d L (L)	^u r(L)	Design Speed (MPH)	d	^d L(R)	^d r (R)	^u L (L)	dr(L)
Design Speed (MPH)	(FT)	(FT)	(FT)	(FT)	(FT)	Desi Spe (MPI	(FT)	(FT)	(FT)	(FT)	(FT)
30	485	340	25	340	160	30	570	405	30	405	190
35	565	400	25	400	185	35	665	470	30	470	220
40	645	455	30	455	210	40	760	540	35	540	250
45	725	510	35	510	235	45	855	605	40	605	280
50	805	570	40	570	265	50	950	675	45	675	310
55	885	625	40	625	290	55	1045	740	50	740	340
60	965	680	45	680	315	60	1140	805	55	805	375
65	1045	740	50	740	340	65	1235	875	55	875	405
70	1125	795	50	795	370	70	1330	940	60	940	435

SU VEHICLE

PASSENGER VEHICLE

 $d \quad \left| \begin{array}{c} d \\ L \\ R \end{array} \right| \quad \left| \begin{array}{c} d \\ r \\ R \end{array} \right| \quad \left| \begin{array}{c} d \\ L \\ L \end{array} \right| \quad \left| \begin{array}{c} d \\ r \\ L \end{array} \right|$

(FT)

20

20

25

25

30

35

35

40

40

(FT)

265

310

355

400

445

490

535

620

(FT)

270

310

355

400

490

535

620

445 205

575 265

(FT)

125

145

165

185

225

245

285

<u>H</u>

30

35

40

45

50

55

60

65

70

මගි≥| (FT) |

375

440

500

565

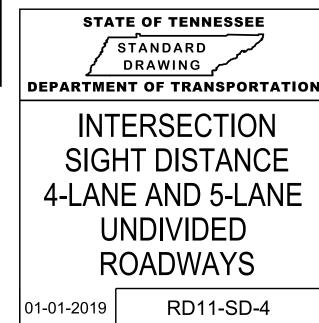
625

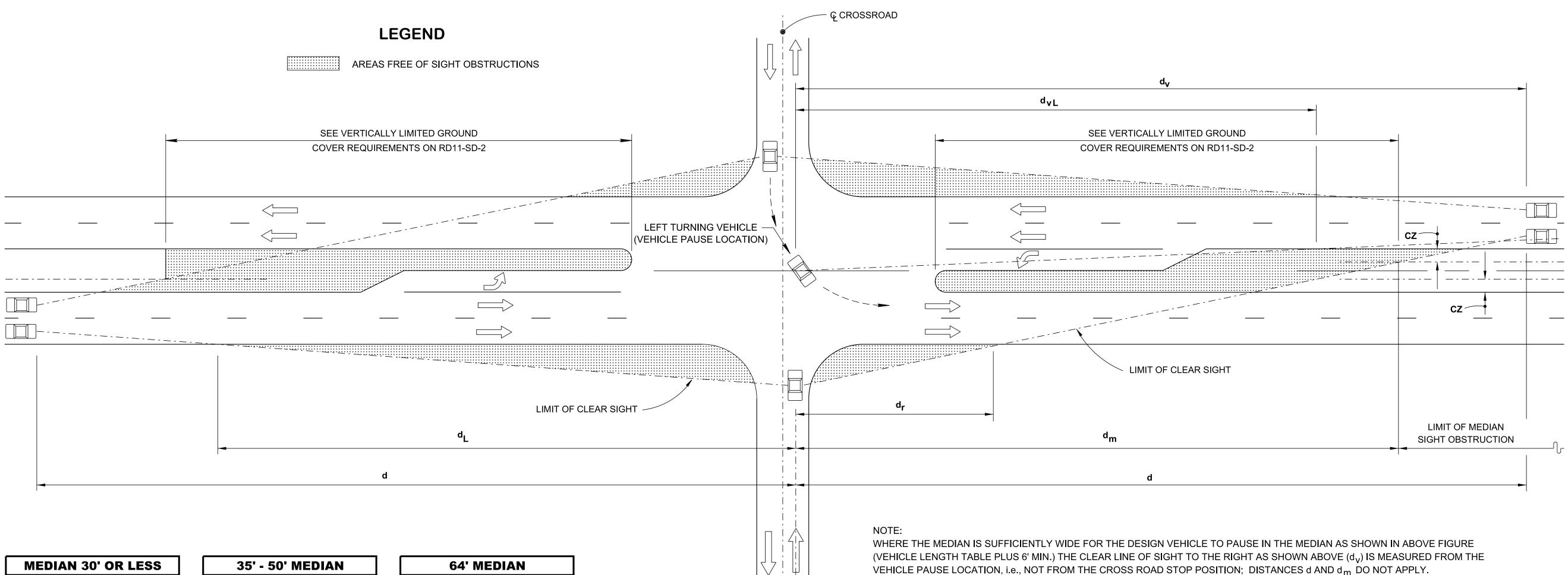
690

750

880

815 575


SIGHT DISTANCE (d) AND RELATED DISTANCES (d L (R), d r (R), d L (L), d r (L)) (FEET)


COMBINATION VEHICLE

COMBINATION VEHICLE

Speed (MPH)	d	dL	dr
Specific NH	(FT)	(FT)	(FT)
30	570	315	190
35	665	365	220
40	760	415	250
45	855	470	280
50	950	520	310
55	1045	575	340
60	1140	625	375
65	1235	675	405
70	1330	730	435

Speed (MPH)	d	dL	dr
Sp.	(FT)	(FT)	(FT)
30	540	380	180
35	630	445	205
40	720	510	235
45	810	580	265
50	900	635	295
55	990	700	325
60	1080	765	355
65	1170	825	380
70	1260	890	410

ME	MEDIAN 30' OR LESS					
Design Speed (MPH)	d	dL	dr	d _m		
Sp Ng	(FT)	(FT)	(FT)	(FT)		
30	620	440	120	530		
35	720	510	140	620		
40	830	590	160	710		
45	930	660	170	790		
50	1030	730	190	880		
55	1140	810	210	970		
60	1240	880	230	1060		
65	1340	950	250	1140		
70	1450	1030	270	1240		

35' - 50' MEDIAN					
Design Speed (MPH)	d	dL	dr	d _m	
De: Sp: (MI	(FT)	(FT)	(FT)	(FT)	
30	670	480	110	590	
35	790	560	130	690	
40	900	640	140	790	
45	1010	720	160	890	
50	1120	800	180	980	
55	1230	870	190	1080	
60	1350	950	210	1180	
65	1460	1040	230	1270	
70	1570	1110	250	1380	

	64' MEDIAN					
Design Speed (MPH)	d	ďL	d _v	d_{VL}		
Sp. (MI	(FT)	(FT)	(FT)	(FT)		
30	470	340	510	360		
35	540	390	600	430		
40	620	440	680	490		
45	700	500	770	550		
50	780	560	850	610		
55	850	610	930	660		
60	930	660	1020	730		
65	1010	720	1100	780		
70	1090	780	1190	850		

(2)

INTERMEDIATE SEMI-TRAILER (WB-40)

SIGHT DISTANCES (d) & (d_V) AND RELATED DISTANCES (d_L, d_r, d_m & d_{VL}) (FEET)

ME	MEDIAN 35' OR LESS					
Design Speed (MPH)	d	ďL	d _r	dm		
Sp De	(FT)	(FT)	(FT)	(FT)		
30	540	390	100	460		
35	630	450	100	540		
40	720	510	120	620		
45	810	580	130	690		
50	900	640	150	770		
55	990	700	160	850		
60	1080	770	180	920		
65	1170	830	190	1000		
70	1260	900	200	1070		

	40'-64' MEDIAN					
Design Speed (MPH)	d	dL	d _v	d _{vL}		
Sp De	(FT)	(FT)	(FT)	(FT)		
30	380	270	420	300		
35	440	320	490	350		
40	500	360	560	400		
45	570	410	630	450		
50	630	450	700	500		
55	690	490	770	550		
60	750	530	840	600		
65	820	580	910	650		
70	880	620	980	700		

MEDIAN 22' OR LESS						
Design Speed (MPH)	d	ďL	dr	d _m		
Sp Sp	(FT)	(FT)	(FT)	(FT)		
30	390	280	90	330		
35	460	330	100	380		
40	520	370	110	440		
45	590	420	130	490		
50	650	460	140	540		
55	720	510	160	600		
60	780	560	170	650		
65	850	600	180	700		
70	910	660	200	770		

70

PASSENGER VEHICLE (P)

SINGLE-UNIT TRUCK (SU-30)

SIGHT DISTANCES (d) & (d_V) AND RELATED DISTANCES (d_L, d_r, d_m & d_{VL}) (FEET)

4 LANE DIVIDED HIGHWAYS

2/13/2019 10:27:19 AM C:\Users\jj00547\Desktop\3 NOT TO SCALE

a\R

Crite

sign

De

р

S

Ур

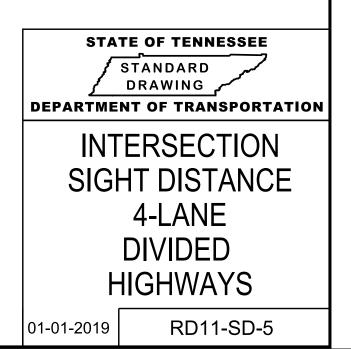
RD11

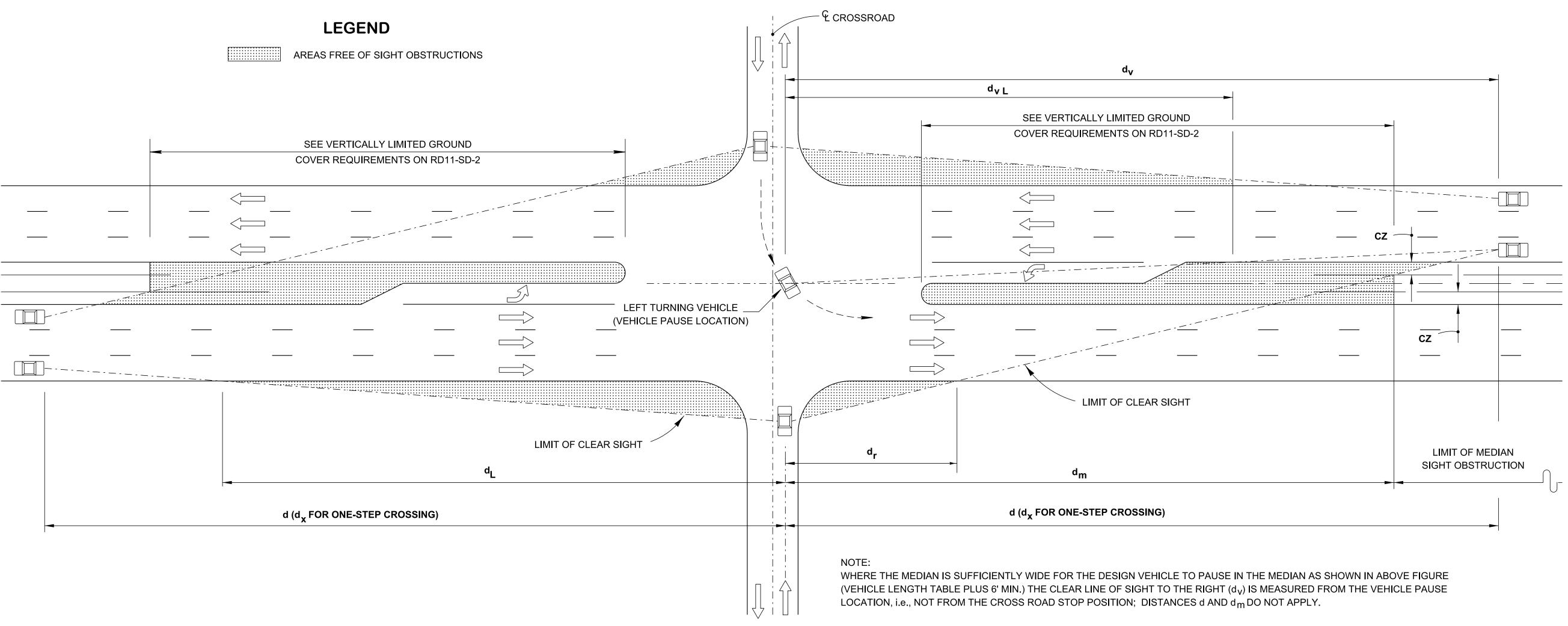
LLP

SPECIAL NOTES

(1) INTERSECTION SIGHT DISTANCE VALUES ARE PROVIDED FOR PASSENGER VEHICLES, SINGLE UNIT (SU) VEHICLES AND COMBINATION VEHICLES. INTERSECTION SIGHT DISTANCE BASED ON THE PASSENGER VEHICLE IS SUITABLE FOR MOST INTERSECTIONS. WHERE SUBSTANTIAL VOLUMES OF HEAVY VEHICLES ENTER THE MAJOR-ROAD, SUCH AS FROM RAMP TERMINALS WITH STOP CONTROL OR ROADWAYS SERVING TRUCK TERMINALS, THE USE OF TABULATED VALUES FOR (SU) VEHICLES OR COMBINATION VEHICLES SHOULD BE CONSIDERED.

VEHICLE LENGTH TABLE				
VEHICLE LENGTH (FT.)				
19				
30				
40				
45.5				
73.5				


ALL PROPERTY NEEDED TO ACHIEVE SIGHT DISTANCE AT INTERSECTIONS SHOULD BE ACQUIRED AS RIGHT-OF-WAY. SEE STD DWG RD11-SD-1 FOR RIGHT-OF-WAY LINE PLACEMENT.


DESIGN NOTES

- (A)SEE RD11-SD-1 FOR ORIGIN OF CLEAR SIGHT LINE ON THE ROAD
- B VALUES SHOWN IN THE TABLES ARE THE GOVERNING (CONTROLLING) SIGHT DISTANCES CALCULATED BASED ON "AASHTO CASE B - INTERSECTION WITH STOP CONTROL ON THE MINOR ROAD."
- \bigcirc **DEFINITIONS:**
 - THE CLEAR LINE OF SIGHT DISTANCE. d
 - $d_{\rm VL}$ $\,$ The Clear Line of Sight to the right is the distance measured for the vehicle pause LOCATION TO THE EDGE OF THE INSIDE TRAVEL LANE.
 - CZ CLEAR ZONE WIDTH FOR NONRESTRICTED CONDITIONS (6' MIN. FOR RESTRICTED CONDITIONS).
 - d_m DISTANCE MEASURED FROM THE CENTERLINE OF THE ENTRANCE LANE OF THE MINOR ROADWAY TO A POINT ON THE MEDIAN CLEAR ZONE LIMIT OR HORIZONTAL CLEARANCE LIMIT FOR THE FAR SIDE ROADWAY OF THE MAJOR ROADWAY.
 - d_v THE CLEAR LINE OF SIGHT DISTANCE FOR A VEHICLE ON THE APPROACH ROADWAY TO A PAUSED VEHICLE IN THE MEDIAN.
 - d_r CLEAR LINE OF SIGHT DISTANCE TO THE RIGHT FROM THE MINOR ROADWAY
- SEE SHEET RD11-SD-2 FOR MEDIAN LANDSCAPE REQUIREMENTS.

25'-64' MEDIAN							
d	ďL	d _v	d _{vL}				
(FT)	(FT)	(FT)	(FT)				
290	210	340	240				
340	240	390	280				
390	280	450	320				
430	310	500	360				
480	340	560	400				
530	380	610	430				
580	410	670	480				
630	450	720	510				
670	480	780	550				

 \bigcirc

MEDIAN 30' OR LESS				
Design Speed (MPH)	d	ďL	dr	d _m
Des Spe (MF	(FT)	(FT)	(FT)	(FT)
30	670	480	110	590
35	780	560	130	680
40	890	630	150	780
45	1000	710	160	870
50	1103	780	180	960
55	1220	870	200	1060
60	1330	950	220	1160
65	1440	1020	230	1260
70	1550	1100	250	1350

35' - 50' MEDIAN				
Design Speed (MPH)	d	ďL	d _r	d _m
Des Spe (MF	(FT)	(FT)	(FT)	(FT)
30	710	510	100	630
35	820	580	120	730
40	940	670	130	840
45	1060	750	150	950
50	1170	830	160	1040
55	1290	920	180	1150
60	1410	1000	200	1260
65	1520	1080	210	1350
70	1640	1160	230	1460

	64' MEDIAN			
)esign Speed MPH)	d	ďL	d _V	d _{vL}
Desi Spe (MPI	(FT)	(FT)	(FT)	(FT)
30	500	360	510	370
35	580	410	600	430
40	660	470	680	490
45	750	530	770	550
50	830	590	850	610
55	910	650	930	660
60	990	700	1020	730
65	1070	760	1100	780
70	1160	820	1190	850

$\left(\right)$	1)	

Design Speed (MPH)

30

35

40

45

50

55

60

65

70

INTERMEDIATE SEMI-TRAILER (WB-40)

SIGHT DISTANCES (d), (d $_{V}$) & (d $_{X}$) AND RELATED DISTANCES (d_L, d_r, d_m& d_{VL}) (FEET)

ME	DIAN	35' C	R LE	SS
Design Speed (MPH)	d	dL	d _r	dm
Sp (M	(FT)	(FT)	(FT)	(FT)
30	580	410	100	500
35	670	480	120	580
40	770	550	130	660
45	860	610	150	740
50	960	680	170	830
55	1060	750	180	910
60	1150	820	200	990
65	1250	880	220	1070
70	1340	950	230	1150

40'-64' MEDIAN				
Design Speed (MPH)	d	dL	d _v	d _{vL}
Sp Ce	(FT)	(FT)	(FT)	(FT)
30	420	290	420	300
35	480	340	490	350
40	450	320	560	400
45	620	440	630	450
50	680	490	700	500
55	750	530	770	550
60	820	580	840	600
65	880	630	910	650
70	950	680	980	700

MEDIAN 22' OR LESS				
Design Speed (MPH)	d	dL	dr	d _m
Sp N M	(FT)	(FT)	(FT)	(FT)
30	420	300	80	360
35	490	350	90	420
40	560	400	100	480
45	630	450	120	540
50	700	500	130	600
55	770	550	140	660
60	840	600	150	720
65	900	640	160	770
70	970	690	180	830

SINGLE-UNIT TRUCK (SU-30)

σ

σ

σ

D

RD

2/13/2019 10:34:19 AM C:\Users\jj00547\Desktop\3

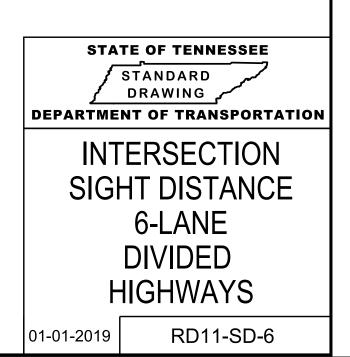
LLP

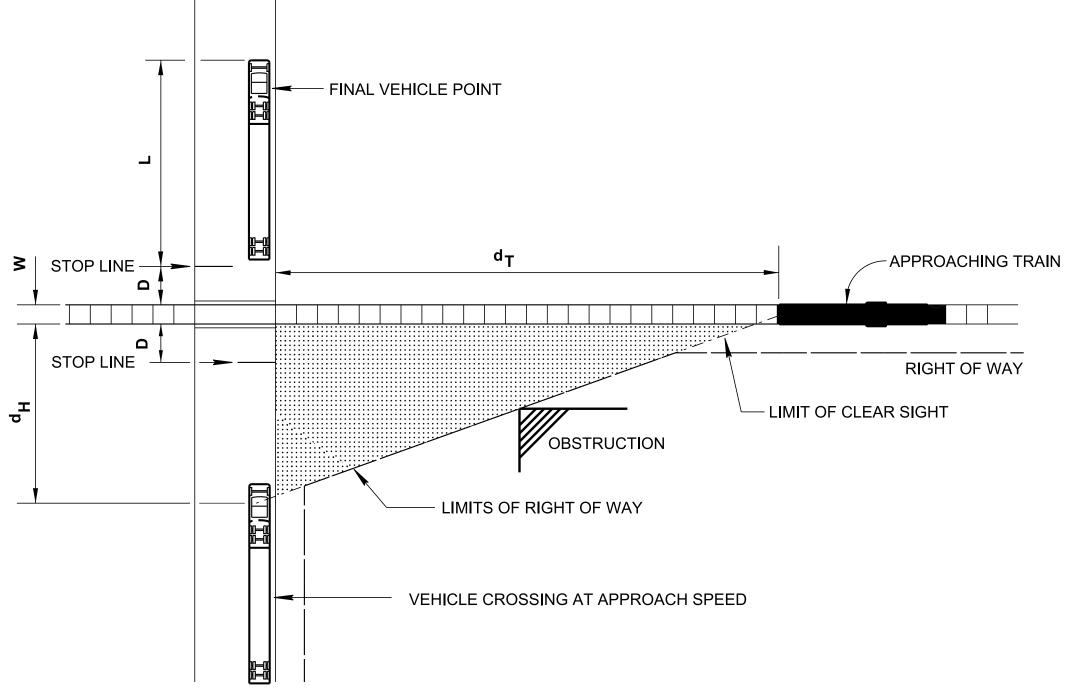
6 LANE DIVIDED HIGHWAYS

SPECIAL NOTES

INTERSECTION SIGHT DISTANCE VALUES ARE PROVIDED FOR PASSENGER VEHICLES, SINGLE UNIT (SU) VEHICLES AND COMBINATION VEHICLES. INTERSECTION SIGHT DISTANCE BASED ON THE PASSENGER VEHICLE IS SUITABLE FOR MOST INTERSECTIONS. WHERE SUBSTANTIAL VOLUMES OF HEAVY VEHICLES ENTER THE MAJOR-ROAD, SUCH AS FROM RAMP TERMINALS WITH STOP CONTROL OR ROADWAYS SERVING TRUCK TERMINALS, THE USE OF TABULATED VALUES FOR (SU) VEHICLES OR COMBINATION VEHICLES SHOULD BE CONSIDERED.

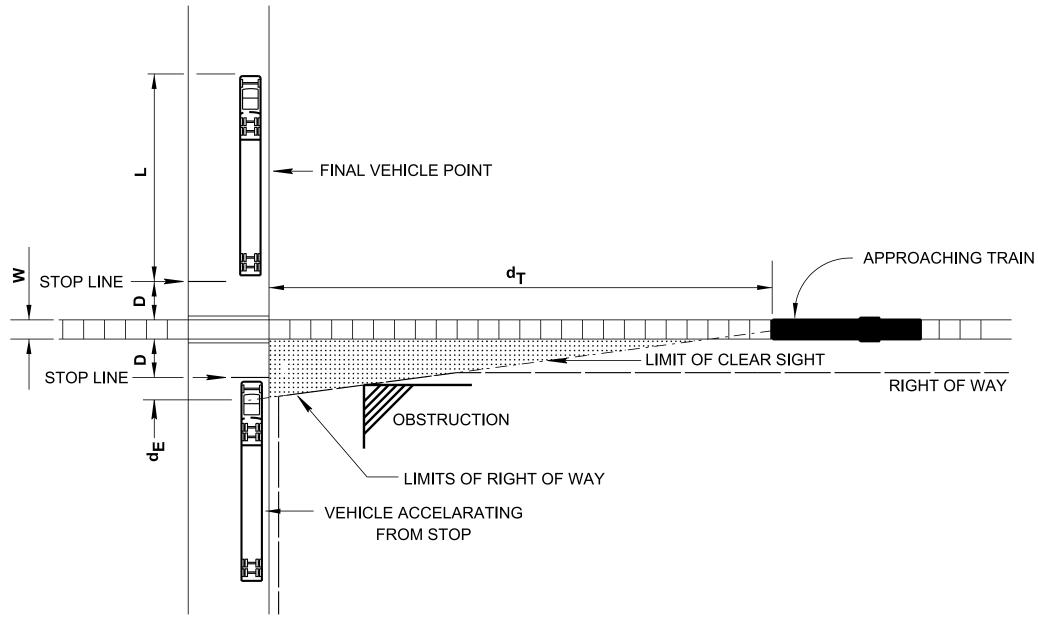
VEHICLE LENGTH TABLE			
VEHICLE TYPE	VEHICLE LENGTH (FT.)		
PASSENGER (P)	19		
SINGLE UNIT (SU)	30		
LARGE SCHOOL BUS	40		
WB-40	45.5		
WB-67	73.5		


(2) ALL PROPERTY NEEDED TO ACHIEVE SIGHT DISTANCE AT INTERSECTIONS SHOULD BE ACQUIRED AS RIGHT-OF-WAY. SEE STD DWG RD11-SD-1 FOR RIGHT-OF-WAY LINE PLACEMENT.


DESIGN NOTES

- SEE RD11-SD-1 FOR ORIGIN OF CLEAR SIGHT LINE ON THE ROAD. (A)
- B VALUES SHOWN IN THE TABLES ARE THE GOVERNING (CONTROLLING) SIGHT DISTANCES CALCULATED BASED ON "AASHTO CASE B - INTERSECTION WITH STOP CONTROL ON THE MINOR ROAD."
- \bigcirc **DEFINITIONS:**
 - THE CLEAR LINE OF SIGHT DISTANCE. d
 - d_{VL} THE CLEAR LINE OF SIGHT TO THE RIGHT IS THE DISTANCE MEASURED FOR THE VEHICLE PAUSE LOCATION TO THE EDGE OF THE INSIDE TRAVEL LANE.
 - CZ CLEAR ZONE WIDTH FOR NONRESTRICTED CONDITIONS (6' MIN. FOR RESTRICTED CONDITIONS).
 - DISTANCE MEASURED FROM THE CENTERLINE OF THE ENTRANCE LANE OF THE MINOR ROADWAY dm TO A POINT ON THE MEDIAN CLEAR ZONE LIMIT OR HORIZONTAL CLEARANCE LIMIT FOR THE FAR SIDE ROADWAY OF THE MAJOR ROADWAY.
 - THE CLEAR LINE OF SIGHT DISTANCE FOR A VEHICLE ON THE APPROACH ROADWAY TO A PAUSED d, VEHICLE IN THE MEDIAN.
 - CLEAR LINE OF SIGHT DISTANCE TO THE RIGHT FROM THE MINOR ROADWAY dr
- SEE SHEET RD11-SD-2 FOR MEDIAN LANDSCAPE REQUIREMENTS.

25'-64' MEDIAN					
d	ďL	d _v	d _{vL}		
(FT)	(FT)	(FT)	(FT)		
310	220	340	240		
360	260	390	280		
420	300	450	320		
470	340	500	360		
520	370	560	400		
570	410	610	440		
620	440	670	480		
670	480	720	510		
720	510	780	560		


 \bigcirc

CASE A

APPROACHING VEHICLE TO SAFELY CROSS OR STOP AT RAILROAD CROSSING (FOR CLARITY RIGHT OF WAY LINES ARE NOT SHOWN FOR THE OTHER QUADRANTS)

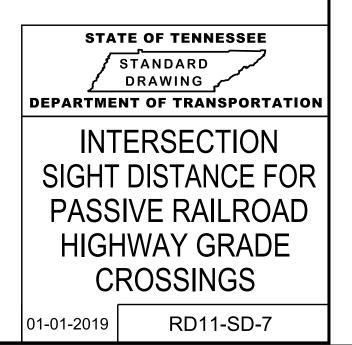
CASE B

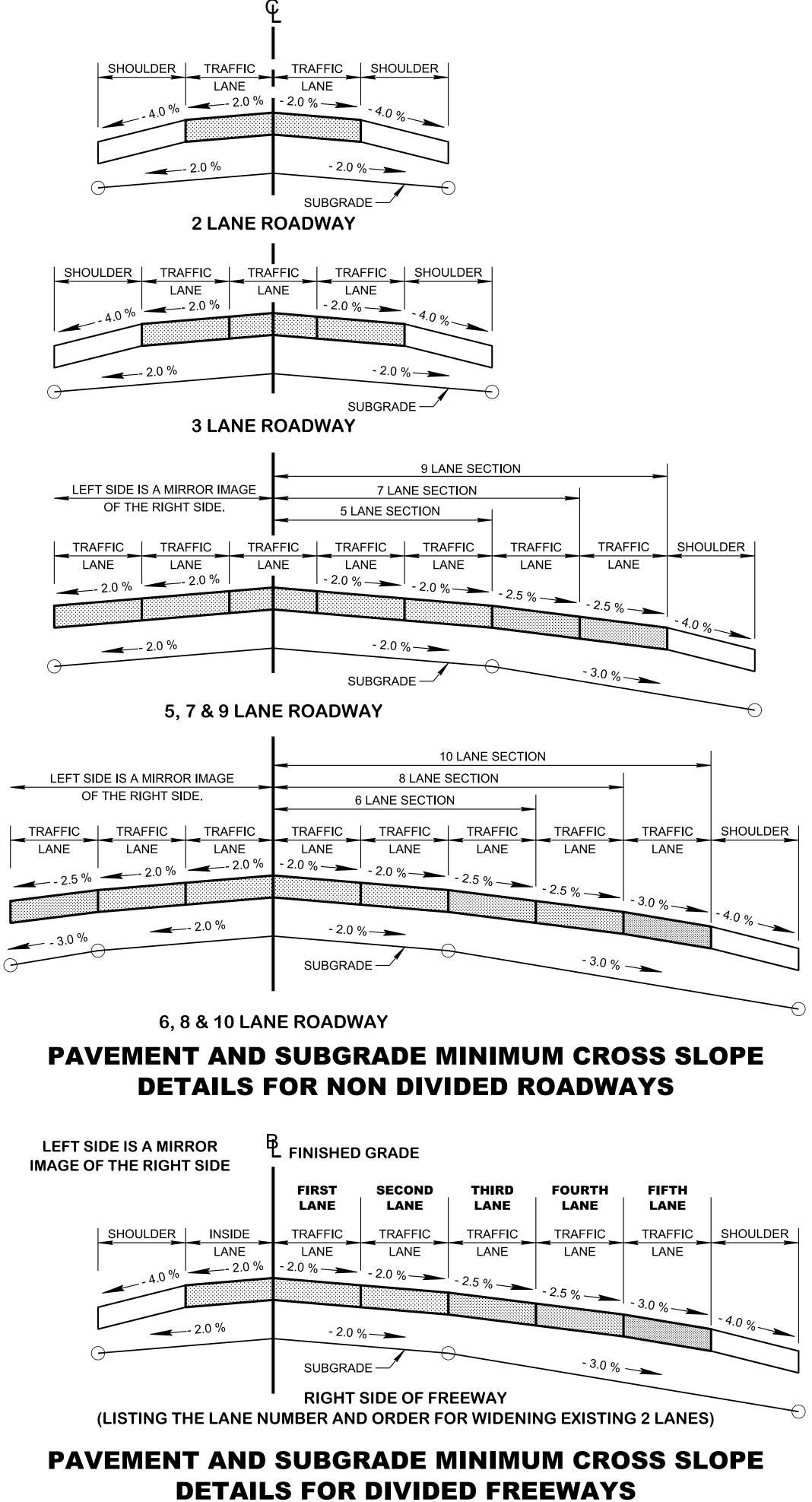
VEHICLE DEPARTING FROM STOPPED POSITION TO SAFELY CROSS RAILROAD TRACK (FOR CLARITY RIGHT OF WAY LINES ARE NOT SHOWN FOR THE OTHER QUADRANTS)

dg.

DESIGN SIGHT DISTANCES FOR COMBINATION VEHICLE PASSIVE RAILROAD HIGHWAY GRADE CROSSINGS

CONDITIONS:	SINGLE RR TRACK 90° CROSSIN
	FLAT HIGHWAY GRADES, PASS


TRAIN SPEED	CASE B VEHICLE DEPARTURE FROM STOP				SE A VEHICLE		
(MPH)		١	/EHICLE SI	PEED (MPH	H) (V _v)		
	0	10	20	30	40	50	60
		SIGHT DISTANCE ALONG RAILROAD TRACT, d _T (FT)					
10	255	155	110	102	102	106	112
20	509	310	220	203	205	213	225
30	794	465	331	305	307	319	337
40	1019	619	441	407	409	426	450
50	1273	774	551	509	511	532	562
60	1528	929	661	610	614	639	675
70	1783	1084	771	712	716	745	787
80	2037	1239	882	814	818	852	899
90	2292	1394	992	915	920	958	1012
STOPP	ING SIGHT DIST	ANCE ALO	NG HIGHW	AY FROM	RR CROSS	SING, d _H (F	T) 🛞
		69	135	220	324	447	589


\bigcirc ADD D = 15' TO d_H TO STOP BAR.

GENERAL NOTES

- (1) SIGHT DISTANCES ARE REQUIRED IN ALL QUADRANTS OF THE CROSSING.
- (2) CORRECTIONS MUST BE MADE FOR CONDITIONS OTHER THAN SHOWN IN THE TABLE, SUCH AS, MULTIPLE RAILS, SKEW, ASCENDING AND DESCENDING GRADES, AND CURVATURE OF HIGHWAYS AND RAILS. FOR CONDITION ADJUSTMENTS AND ADDITIONAL INFORMATION, REFER TO RAILROAD-HIGHWAY GRADE CROSSINGS UNDER CHAPTER 9 OF "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK).
- 3 DEFINITIONS:
 - d_H = SIGHT-DISTANCE LEG ALONG HIGHWAY ALLOWS A VEHICLE PROCEEDING TO SPEED V_V TO CROSS TRACKS EVEN THOUGH A TRAIN IS OBSERVED AT A DISTANCE d_T FROM THE CROSSING OR TO STOP THE VEHICLE WITHOUT ENCROACHMENT OF THE CROSSING AREA (FT)
 - V_v = SPEED OF THE VEHICLE (MPH)
 - W = DISTANCE BETWEEN OUTER RAILS (FOR A SINGLE TRACK, THIS VALUE IS 5 FT.)
 - D = DISTANCE FROM THE STOP LINE OR FRONT OF THE VEHICLE TO THE NEAREST RAIL, WHICH IS ASSUMED TO BE 15 FT.
 - d_E = DISTANCE FROM THE DRIVER TO THE FRONT OF THE VEHICLE, WHICH IS ASSUMED TO BE 8 FT.
 - L = LENGTH OF VEHICLE, WHICH IS ASSUMED TO BE 73.5 FT. (WB-67)
 - d_T = SIGHT DISTANCE ALONG RR TRACK
 - V_T = SPEED OF THE TRAIN (M.P.H.) (DESIGNER SHOULD OBTAIN THIS INFORMATION FROM THE UTILITIES OFFICE)

SING, DESIGN VEHICLE WB-67, SIVE CROSSING

σ

0 0

NOT TO SCALE

SUPERELEVATION TRANSITION EQUATIONS

$$L = L_{R} + L_{T}$$
$$L_{R} = \frac{(W n 1) e_{d}}{\Delta \%} (b_{W})$$
$$L_{T} = \frac{NC}{e_{d}} L_{R}$$

SUPERELEVATION RUNOFF LENGTH (L_R) **ADJUSTMENT FACTORS**

NUMBER OF TOTAL LANES	n ₁	b _w
2	1	1.00
3	1.5	0.83
4	2	0.75
5	2.5	0.70
6	3	0.67

MAXIMUM RELATIVE GRADIENT			
V	Δ%	V	Δ%
20	0.74	50	0.50
25	0.70	55	0.47
30	0.66	60	0.45
35	0.62	65	0.43
40	0.58	70	0.40
45	0.54		

	MINIMUM RADII AND DESIGN		L
	SUPERELEVATION RATES	R	MINIMUM RADIUS OF CURVE
	, P 3-33 THRU 3-58.	V	ASSUMED DESIGN SPEED (M
	e Max = 4% (15-45 MPH) P. 3-55, TABLE 3-13b (METHOD 2)	e	DESIGNED RATE OF SUPERE
	4% (50-60 MPH) P. 3-44, TABLE 3-8 (METHOD 5)	W	LANE WIDTH (TABLES ASSUM
	e MAX = 6% (15-45 MPH) P. 3-55, TABLE 3-13b (METHOD 2) 6% (50-60 MPH) P. 3-45, TABLE 3-9 (METHOD 5)	n ₁	NUMBER OF LANES ROTATED
	$e_{MAX} = 8\%$ (15-70 MPH) P. 3-47, TABLE 3-10b (METHOD 5)	b _v	, ADJUSTMENT FACTOR FOR N
	$e_{MAX} = 10\%$ (15-70 MPH) P. 3-49, TABLE 3-11b (METHOD 5)	Δ %	MAXIMUM RELATIVE GRADIE
	MAX = 10% (13-70 MPT) P. 3-49, TABLE 3-115 (METHOD 3)	L	TOTAL TRANSITION LENGTH
	FOR SUPERELEVATION RUNOFF FOR HORIZONTAL CURVES SEE	Lī	TANGENT RUNOUT LENGTH
	, P 3-59 THRU 3-84.	LR	SUPERELEVATION RUNOFF L
	SUPERELEVATION RUNOFF (L $_{R}$) P. 3-65, TABLE 3-17b	NC	NORMAL CROWN (TABLES AS
NOTE:	USE SUPERELEVATION TRANSITION EQUATIONS IF MORE THAN 2 LANES	RC	REVERSE CROWN
	(n1) ARE ROTATED. SEE P. 3-61 FOR ADDITIONAL INFORMATION.	LN	NUMBER OF TRAVEL LANES

GENERAL N	IOTES
-----------	-------

- (1) FOR SPECIFIC CONDITIONS NOT COVERED, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 201 (GREEN BOOK).
- (2) TABLE VALUES FOR URBAN LOW SPEED SUPERELEVATION (45 MPH OR LESS) ARE CALCULATED USING THE DISTRIBUTION METHOD 2 OF "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK). ALL OTHER VALUES ARE CALCULATED USING METHOD 5.
- (3) ALL HORIZONTAL CURVES SHALL BE SUPERELEVATED IN ACCORDANCE WITH "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 AND SUPERELEVATION STANDARD DRAWINGS, UNLESS OTHERWISE SHOWN ON THE PLANS.
- (4) SPIRALS ARE RECOMMENDED FOR DESIGN SPEED OF 50 MPH OR GREATER AND DESIGN SUPERELEVATION OF 3 PERCENT OR GREATER.
- (5) DESIGNERS SHALL SELECT THE MORE CONSERVATIVE (LARGER VALUE) SUPERELEVATION RATE IF THE DESIGN RADIUS USED FALLS BETWEEN TWO RADII LISTED IN THE TABLE.
- (6) THE TRANSITION LENGTHS FOUND IN THE SUPERELEVATION TABLES ARE CONSIDERED MINIMUM AND MAY BE ROUNDED UP IN MULTIPLES OF 25 OR 50 FEET TO ALLOW FOR SIMPLIFIED CALCULATIONS.
- (7) WHEN USING THE 4 OR 6 LANE HIGHWAY WITH MEDIAN DETAIL, THE INSIDE EDGE OF PAVEMENT (MEDIAN) SHOULD BE HELD LEVEL AND THE DIFFERENCE IN ELEVATION BETWEEN THE EXTREME TRAVELED WAY EDGES SHOULD BE LIMITED TO THAT NEEDED TO SUPERELEVATE THE ROADWAY.
- (8) ALIGNMENT DESIGNS SHOULD BE SO ARRANGED AS TO AVOID SUPERELEVATION TRANSITIONS ON BRIDGE DECKS TO PREVENT PONDING IN THE AREAS OF ZERO SUPERELEVATION IN THE CROWN CHANGE ZONE.
- (9) USE RURAL SUPERELEVATION RATES ON ALL URBAN FREEWAYS AND EXPRESSWAYS EXCEPT VIADUCTS.
- (10) DESIGNERS SHALL MAINTAIN A MINIMUM PROFILE GRADE OF 0.5 PERCENT THROUGH THE TRANSITION SECTION.
- (1) DESIGNERS SHALL MAINTAIN A MINIMUM EDGE OF PAVEMENT GRADE OF 0.2 PERCENT (0.5 PERCENT FOR CURBED ROADS) THROUGH THE TRANSITION SECTION.
- (12) DESIGNERS SHALL MAINTAIN A CONSTANT GRADIENT THROUGHOUT THE TRANSITION LENGTH.
- (13) SEE STANDARD DRAWINGS FOR SUPERELEVATION TRANSITION DETAILS. 1) TWO, THREE AND FIVE LANE UNDIVIDED: RD11-SE-2 AND RD11-SE-2A
 - 2) FOUR LANE DIVIDED: RD11-SE-3 AND RD11-SE-3A
- (14) FOR HIGH-TYPE ALIGNMENTS, SUPERELEVATION RUNOFF LENGTHS LONGER THAN THOSE SHOWN IN RD11-SE SERIES MAY BE DESIRABLE. IN THIS CASE, DRAINAGE NEEDS OR THE DESIRE FOR SMOOTHNESS IN THE TRAVELED-WAY-EDGE PROFILES MAY CALL FOR A SMALL INCREASE IN RUNOFF LENGTH (FROM PAGE 3-63 "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011).

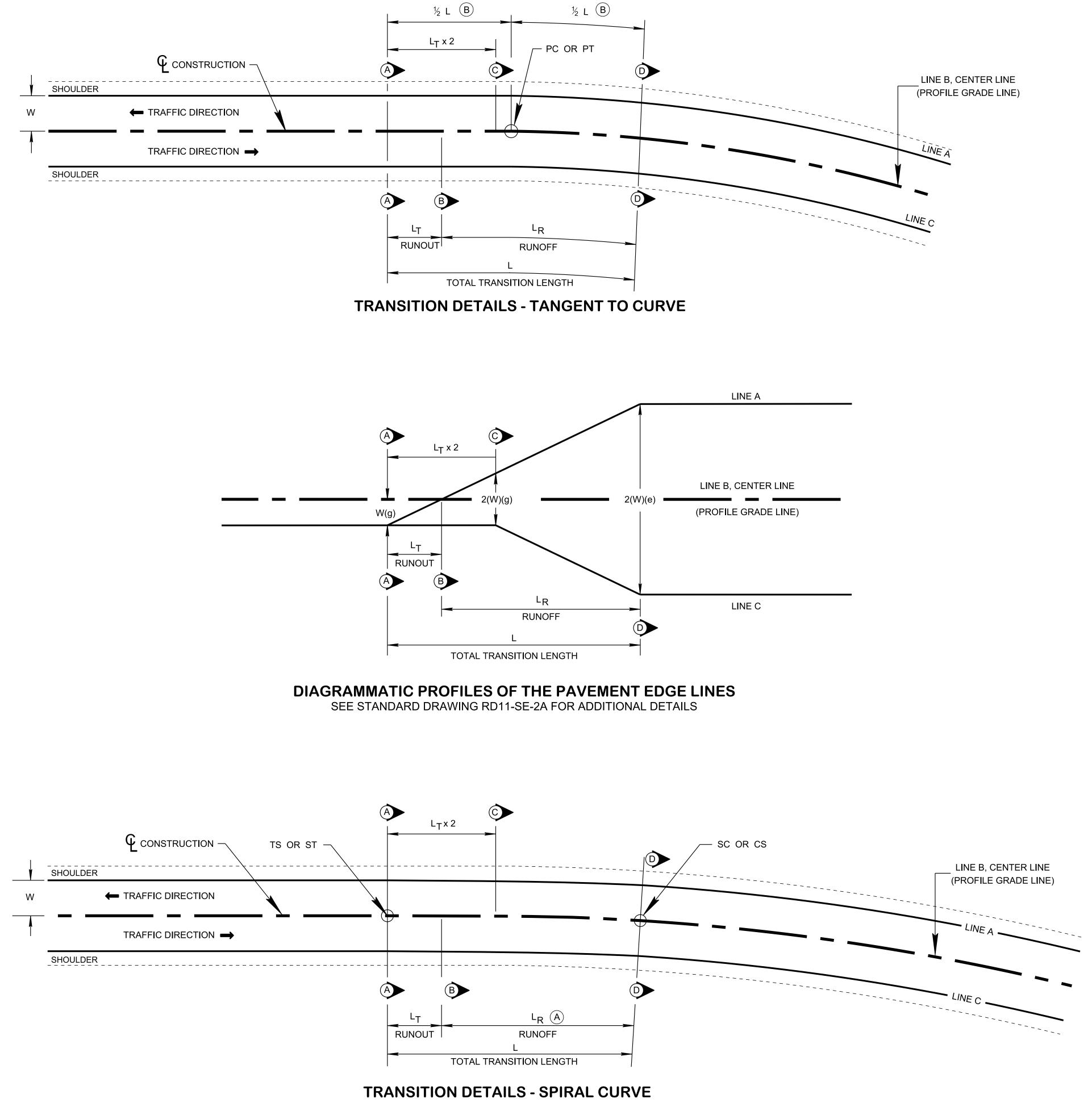
LEGEND

E (FT)

MPH)

ELEVATION (%)

ME LANE WIDTH OF 12 FT PER LANE)


NUMBER OF LANES ROTATED

ENT (%)

LENGTH

ASSUME 2% AS NC) (%)

90101 S a\R Criteri sign De рц S Урİ RD 1/31/2019 3:04:53 PM C:\Users\jj00547\Desktop\3 LLP

dgn.

L
PC = POINT OF CURVATURE PT = POINT OF TANGENCY TS = TANGENT TO SPRIAL ST = SPRIAL TO TANGENT SC = SPIRAL TO CURVE CS = CURVE TO SPIRAL → = SECTION VIEW (SEE RD11-SE- L = TOTAL TRANSITION LENGTH = FROM NORMAL CROWN (2%) T INCLUDES SUPERELEVATION AND TANGENT RUNOUT (LT)
$\frac{1}{2}$ L = 50% OF TOTAL TRANSITION LE W = LANE WIDTH (1 LANE) (TABLES g = NORMAL CROSS SLOPE (0.02 L _R = DISTANCE TO CHANGE CROSS e = SUPERELEVATION RATE (FT/F L _T = DISTANCE TO CHANGE CROSS S = NORMAL SHOULDER SLOPE

(1)

(7)

EGEND

E-2A) = DISTANCE REQUIRED TO TRANSITION TO FULL SUPERELEVATION (e). NRUNOFF (L_R)) LENGTH. ENGTH (L) ES ASSUME 12FT LANES) Present (PT/FT) SS SLOPE FROM 0% TO e FT) SS SLOPE FROM -2% TO 0%

DESIGN NOTES

(A) SPIRAL CURVE LENGTH COINCIDES WITH TOTAL TRANSITION LENGTH.

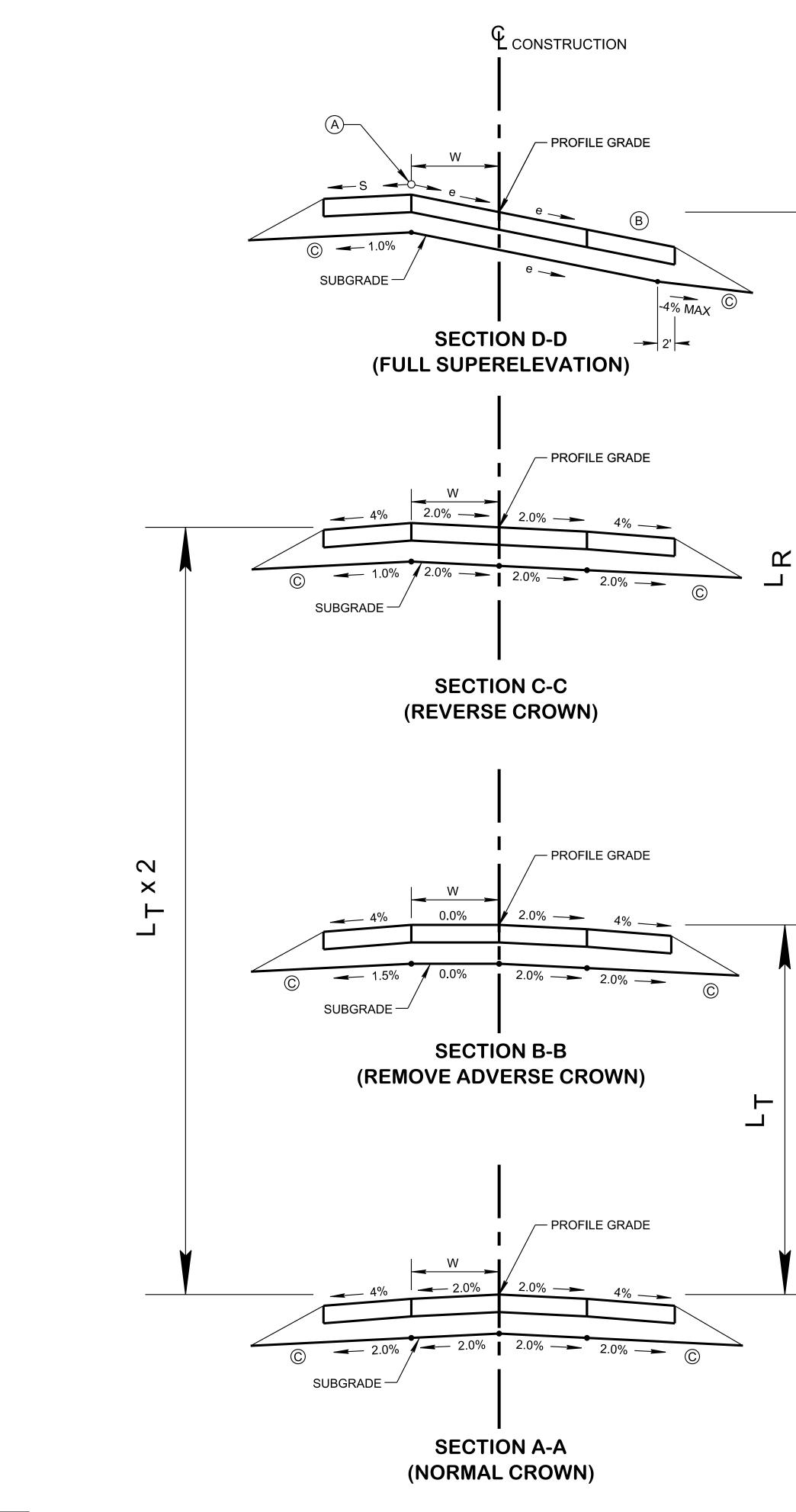
(B) ½ OF TOTAL TRANSITION LENGTH UNLESS SHOWN OTHERWISE ON PLANS.

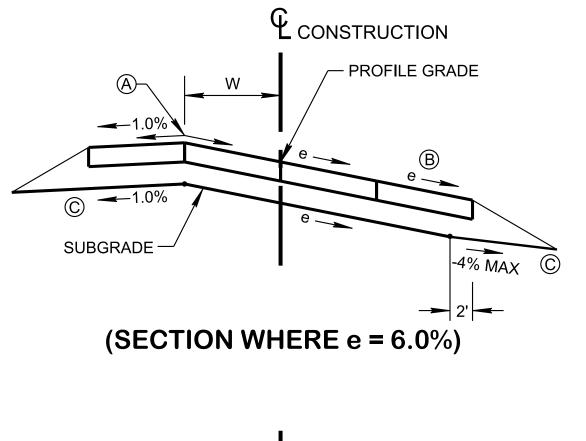
GENERAL NOTES

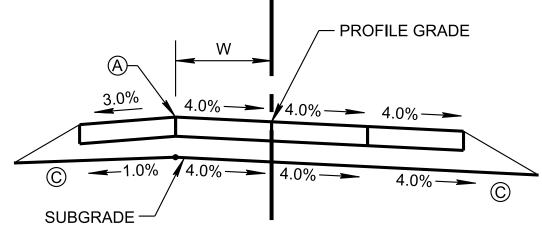
REFER TO SPECIFIC CURVE DATA CONTAINED IN PROJECT PLANS FOR TOTAL TRANSITION LENGTH (L) AND FULL SUPERELEVATION (e).

(2) WHEN SPIRAL CURVES ARE REQUIRED, THE TOTAL TRANSITION LENGTH (L) WILL BE PLACED WITHIN THE SPIRAL. WHEN SPIRAL CURVE TRANSITIONS ARE NOT REQUIRED, 50% OF THE TOTAL TRANSITION LENGTH TO BE PLACED EQUALLY ON EITHER SIDE OF THE PC AND PT UNLESS OTHERWISE SHOWN ON THE PLANS.

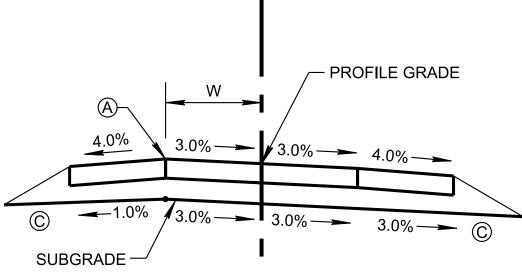

(3) UNLESS OTHERWISE SPECIFIED, ALL LENGTHS ARE MEASURED ALONG THE CENTERLINE OF CONSTRUCTION.


(4) SUPERELEVATION ON THIS STANDARD ARE SHOWN FOR CURVES TO THE RIGHT. CURVES TO THE LEFT ARE MIRROR IMAGE OF WHAT IS SHOWN.

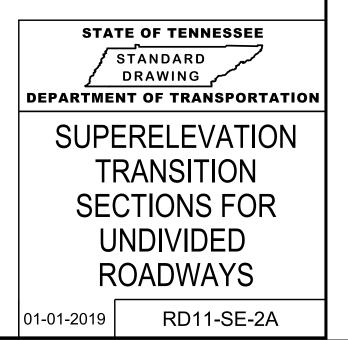

(5) AXIS OF ROTATION COINCIDES WITH PROFILE GRADE LOCATION.

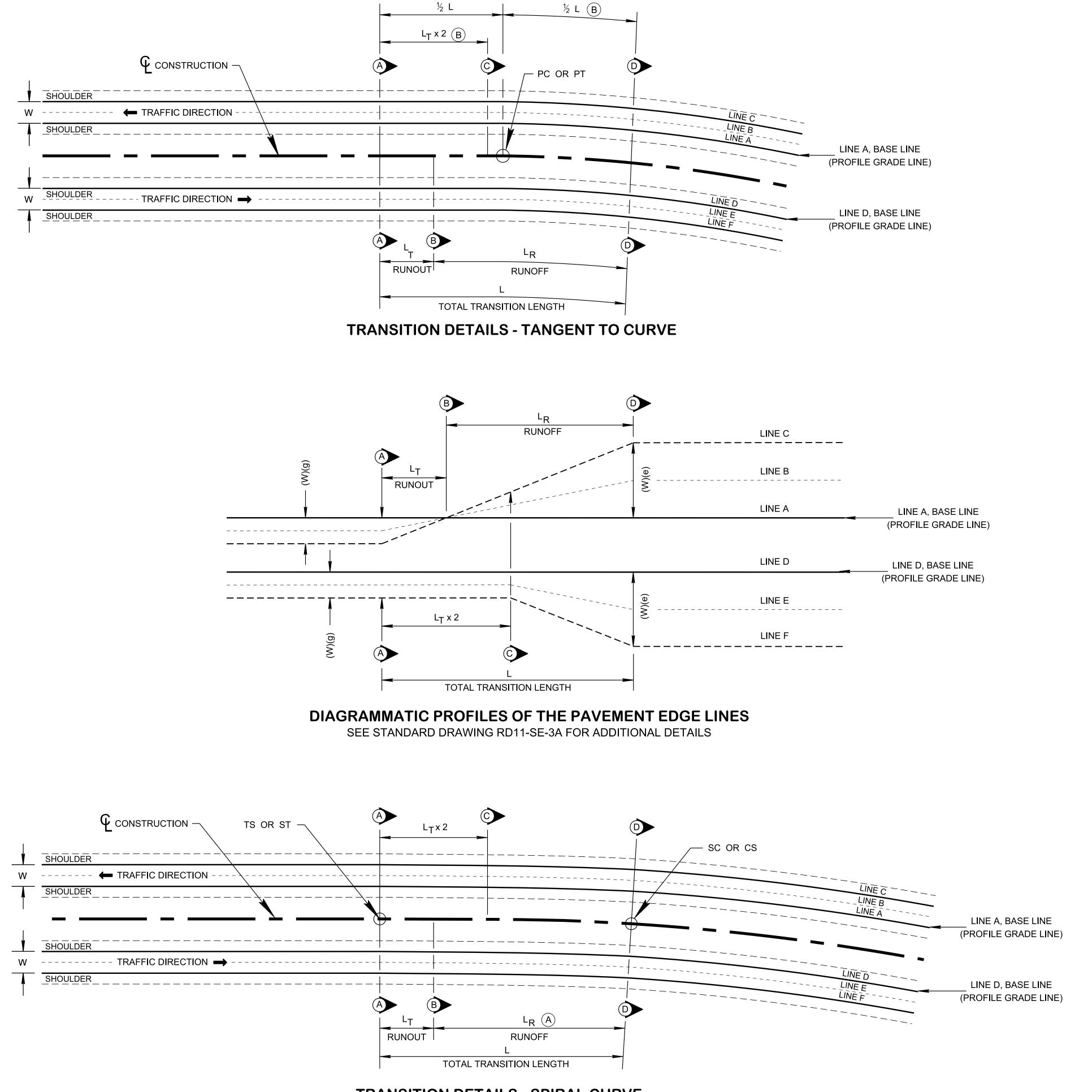

(6) THIS DRAWING IS TO BE USED IN CONJUNCTION WITH STANDARD DRAWING RD11-SE-2A AND RD11-LR SERIES.

USE FORMULAS ON STANDARD DRAWING RD11-SE-1 TO DETERMINE TOTAL TRANSITION LENGTH (L).



(SECTION WHERE LOW SIDE SHOULDER CROWN BREAK RULE OCCURS **WHERE e = 4%**)


(SECTION WHERE HIGH SIDE SHOULDER CROWN BREAK RULE OCCURS WHERE e = 3%)


SECTION WHERE SHOULDER SLOPE TRANSITION BEGINS

DESIGN NOTES

(A) HIGH SIDE SHOULDER: MAINTAIN NORMAL SHOULDER CROSS SLOPE (S), UNTIL THE CROSS SLOPE BREAK WITH THE ADJACENT PAVEMENT REACHES A MAXIMUM ALGEBRAIC DIFFERENCE IN GRADES OF 7%. THEN THE SHOULDER SLOPE SHALL BEGIN TO ROTATE TO MAINTAIN THE ALGEBRAIC DIFFERENCE IN GRADES OF 7% BETWEEN THE SHOULDER AND ROADWAY SLOPE. (B) LOW SIDE SHOULDER: MAINTAIN NORMAL SHOULDER CROSS SLOPE (S) UNTIL THE ADJACENT PAVEMENT SLOPE EQUALS (S), THEN THE SLOPE OF THE SHOULDER ROTATES AT THE SAME CROSS SLOPE AS THE ADJACENT PAVEMENT. C SUBGRADE SLOPE: FOR SHOULDERS IN TANGENT SECTION: THE SUBGRADE MATCHES THE PAVEMENT SLOPE AND NOT THE SHOULDER SLOPE. FOR SHOULDERS IN FULL SUPERELEVATION SECTION; LOW SIDE MATCHES THE PAVEMENT SLOPE AND NOT THE SHOULDER SLOPE UNTIL SUPERELEVATION REACHES 4%. WHEN THE SUPERELEVATION IS GREATER THAN 4% THE SUBGRADE WILL HAVE A BREAK IN SUBGRADE 2' BACK UNDER THE SHOULDER AND THE GRADE RUNNING OUT WILL MAINTAIN A 4% SLOPE. SEE SECTION D-D FOR DETAILS. HIGH SIDE SHOULDER AND ADJACENT PAVEMENT SUBGRADE CHANGE MUST NOT EXCEED AN ALGEBRAIC DIFFERENCE IN GRADES OF 7%. WHEN SUBGRADE TRANSITIONS FROM LOW SIDE TO HIGH SIDE ON THE OUTSIDE SHOULDER FOR SUPERELEVATION; THE SHOULDER SUBGRADE ON THE OUTSIDE MUST ROTATE UP FROM 2% TO 1%. THIS SUBGRADE TRANSITION FOR THE SHOULDER, OCCURS DURING THE TRANSITION FROM NORMAL CROWN TO REVERSE CROWN. SEE SECTIONS A-A, B-B AND C-C FOR DETAILS.

dgn

101

0 ი

S

Δ

Criteria\RI

Design

рu

S

Se

a

Typica

RD1

1/31/2019 3:02:54 PM C:\Users\jj00547\Desktop\3

LLP

TRANSITION DETAILS - SPIRAL CURVE

DESIGN NOTES

(A) SPIRAL CURVE LENGTH COINCIDES WITH TOTAL TRANSITION LENGTH. (B) ½ OF TOTAL TRANSITION LENGTH UNLESS SHOWN OTHERWISE ON PLANS.

GENERAL NOTES

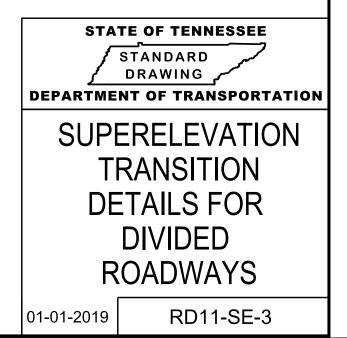
1	REFER TO SPECIFIC CURVE DA TOTAL TRANSITION LENGTH (L
2	WHEN SPIRAL CURVES ARE RE (L) WILL BE PLACED WITHIN TH TRANSITIONS ARE NOT REQUIN LENGTH TO BE PLACED EQUAL UNLESS OTHERWISE SHOWN O
3	UNLESS OTHERWISE SPECIFIE THE CENTERLINE OF CONSTRU
4	SUPERELEVATION ON THIS STAR
5	AXIS OF ROTATION COINCIDES
6	THIS DRAWING IS TO BE USED DRAWING RD11-SE-3A AND RD
$\overline{7}$	

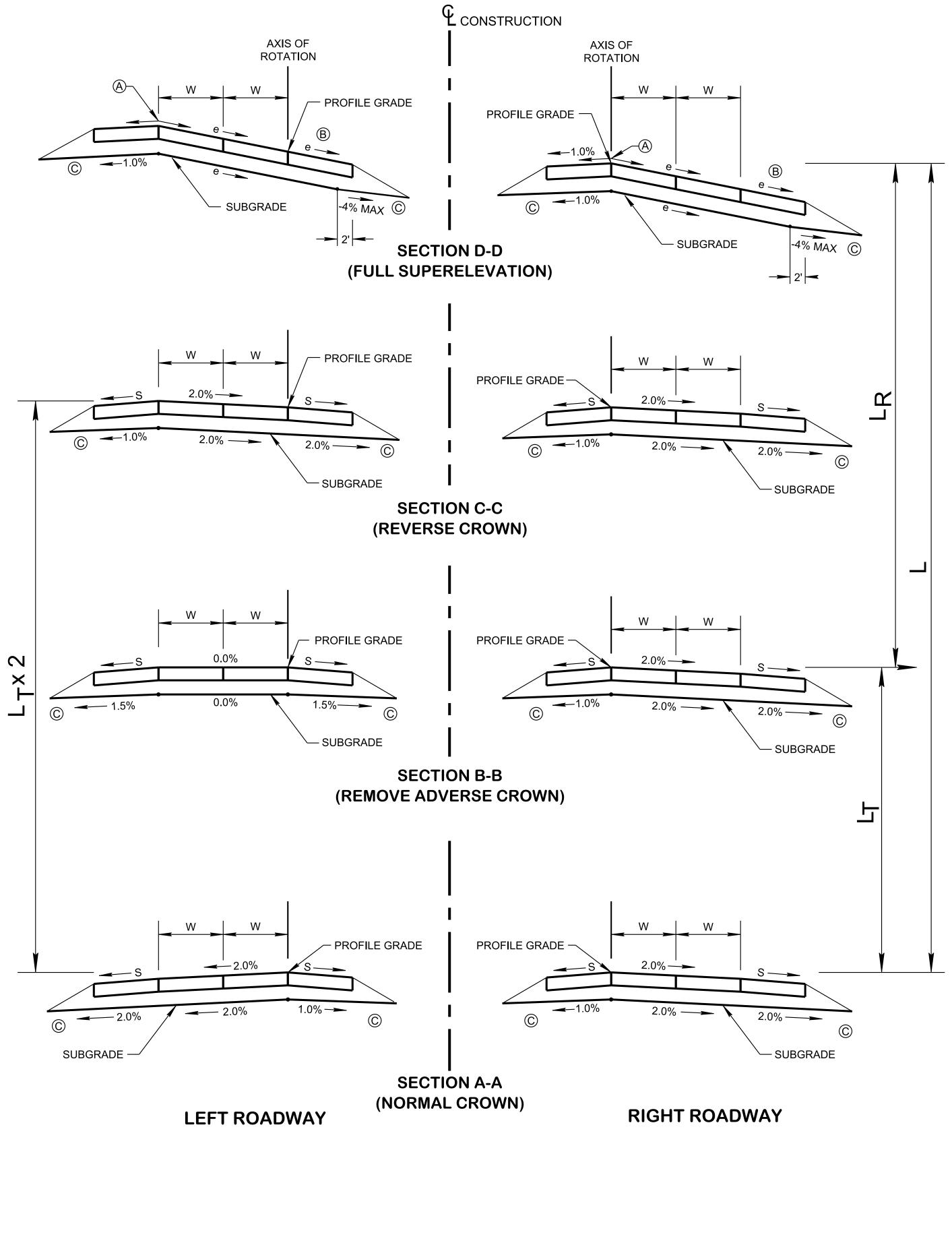
(7) USE FORMULAS ON STANDARD DRAWING RD11-SE-1 TO DETERMINE TOTAL TRANSITION LENGTH (L).

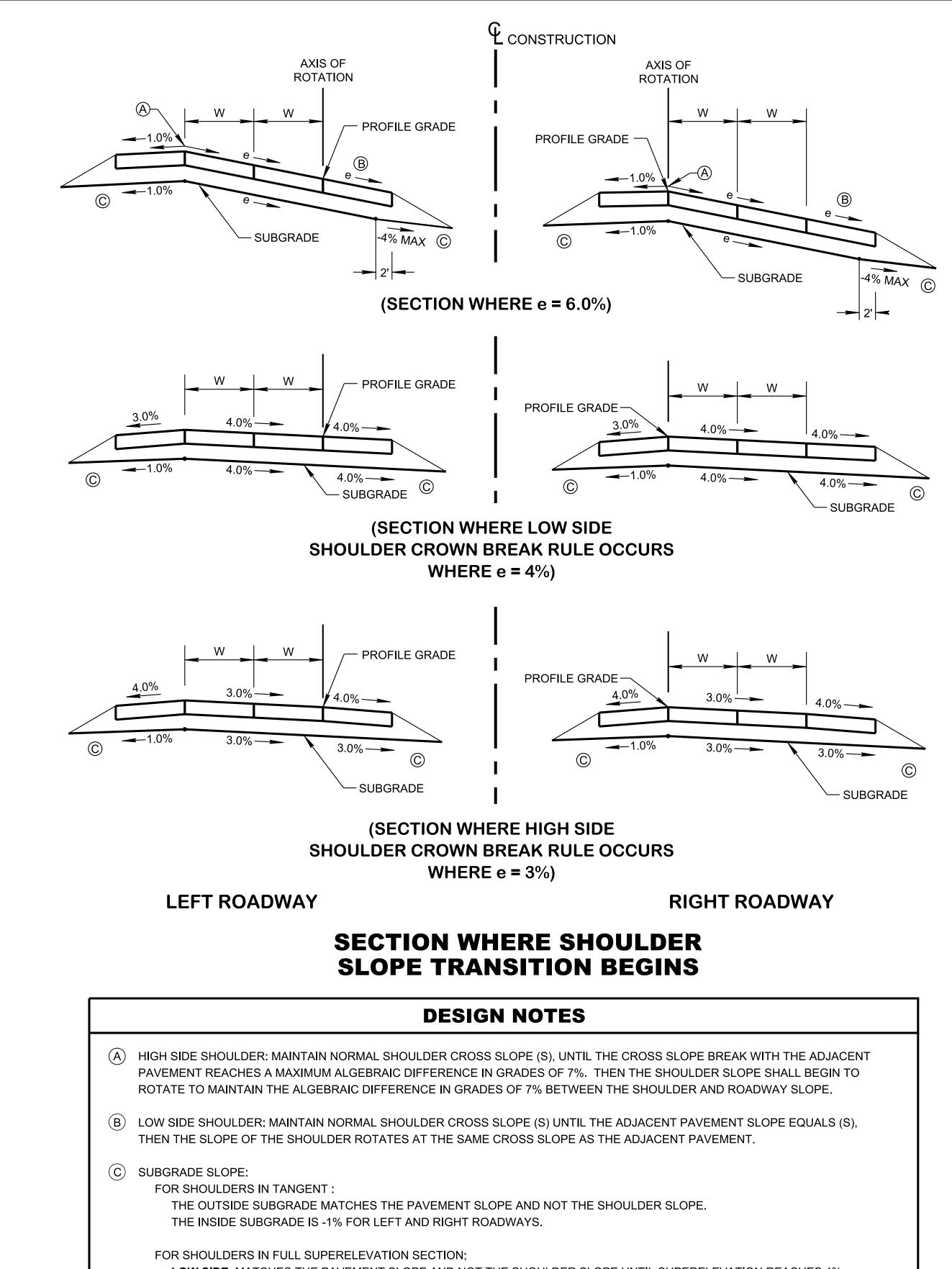
LEGEND

E-3A) = DISTANCE REQUIRED TO TRANSITION TO FULL SUPERELEVATION (e). NRUNOFF (L_R)) LENGTH. ENGTH (L) S ASSUME 12FT LANES) Present (PT/FT) SS SLOPE FROM 0% TO e FT) SS SLOPE FROM -2% TO 0%

DATA CONTAINED IN PROJECT PLANS FOR (L) AND FULL SUPERELEVATION (e).


EQUIRED, THE TOTAL TRANSITION LENGTH HE SPIRAL. WHEN SPIRAL CURVE IRED, 50% OF THE TOTAL TRANSITION LLY ON EITHER SIDE OF THE PC AND PT ON THE PLANS.


ED, ALL LENGTHS ARE MEASURED ALONG RUCTION.


TANDARD ARE SHOWN FOR CURVES TO THE ARE MIRROR IMAGE OF WHAT IS SHOWN.

S WITH PROFILE GRADE LOCATION.

D IN CONJUNCTION WITH STANDARD D11-LR SERIES.

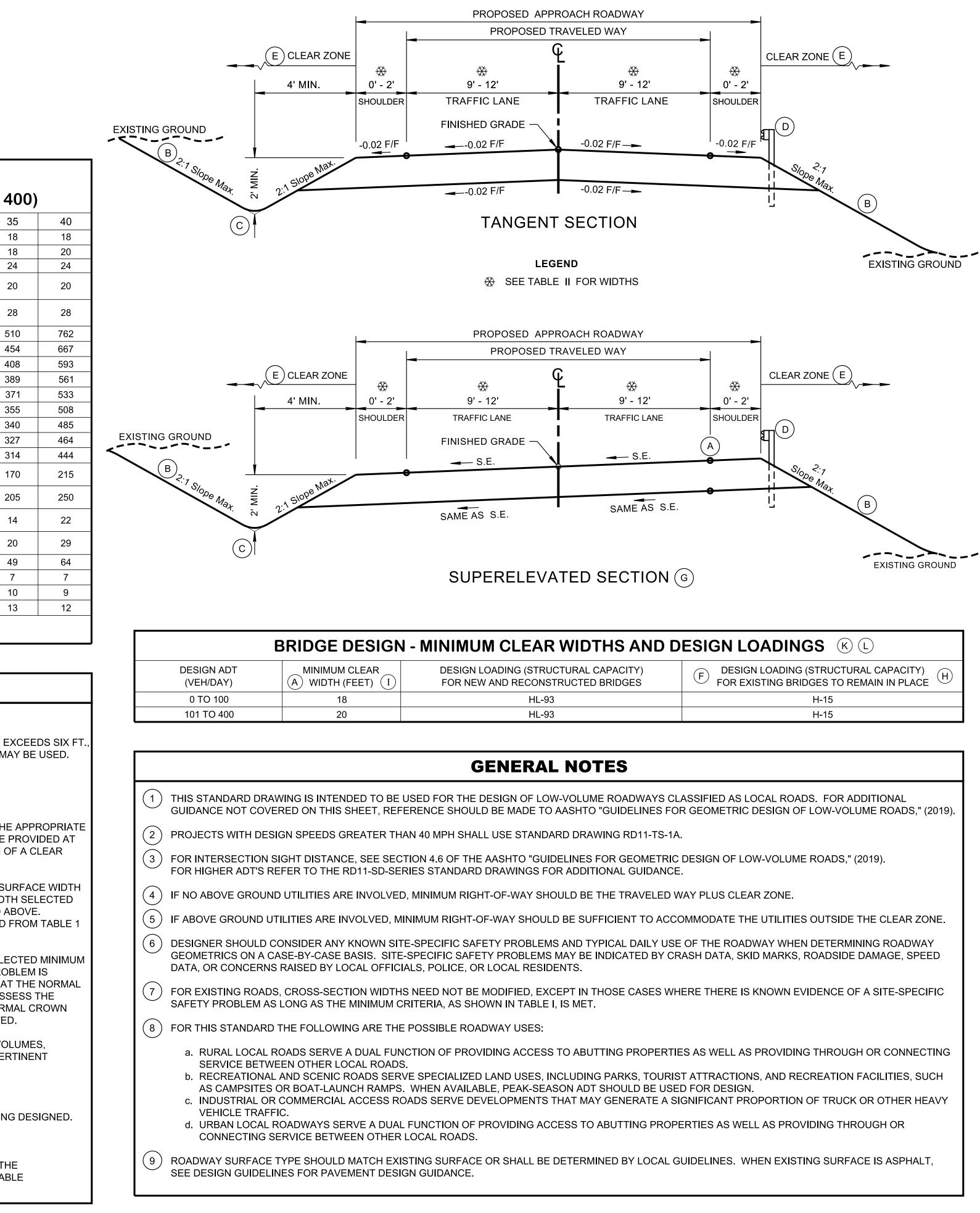


LOW SIDE MATCHES THE PAVEMENT SLOPE AND NOT THE SHOULDER SLOPE UNTIL SUPERELEVATION REACHES 4%. WHEN THE SUPERELEVATION IS GREATER THAN 4% THE SUBGRADE WILL HAVE A BREAK IN SUBGRADE 2' BACK UNDER THE SHOULDER AND THE GRADE RUNNING OUT WILL MAINTAIN A 4% SLOPE. SEE SECTION D-D FOR DETAILS. HIGH SIDE SHOULDER AND ADJACENT PAVEMENT SUBGRADE CHANGE MUST NOT EXCEED AN ALGEBRAIC DIFFERENCE IN GRADES OF 7%.

WHEN SUBGRADE TRANSITIONS FROM LOW SIDE TO HIGH SIDE ON THE LEFT ROADWAY FOR SUPERELEVATION; THE SHOULDER SUBGRADE ON THE OUTSIDE MUST ROTATE UP FROM 2% TO 1% AND THE SHOULDER SUBGRADE ON THE INSIDE MUST ROTATE DOWN FROM 1% TO 2%. THIS SUBGRADE TRANSITION FOR THE INSIDE AND OUTSIDE SHOULDER OCCURS DURING THE TRANSITION FROM NORMAL CROWN TO REVERSE CROWN. SEE SECTIONS A-A, B-B AND C-C FOR DETAILS.

TABLE I MINIM	UM DESIGN S	PEEDS FOR L	.OW-VOLUME	ROADS		
TYPE OF TERRAIN	DESIGN SPEED (MPH) FOR SPECIFIED DESIGN ADT (VEH/DAY)					
TTPE OF TERRAIN	UNDER 50	50 TO 250	250 TO 400	400 TO 2,000		
LEVEL	30	30	40	50		
ROLLING	20(J)	30	30	40		
MOUNTAINOUS	20(J)	20(J)	20(J)	30		

TABLE II


DESIGN STANDARDS FOR LOW-VOLUME LOCAL ROADS AND STREETS (ADT \leq 400)

								•	
	DE	ESIGN SPEED (MPH) J			15	20	25	30	Τ
		RURAL LOCAL ROADS			18	18	18	18	T
		RECREATIONAL AND SCENIC	ROADS		18	18	18	18	
PROPOSED APPROACH		INDUSTRIAL/COMMERCIAL A	CCESS		20	20	22	24	Τ
ROADWAY (FEET)	LOW DEVE	URBAN LOCAL ROADS ELOPMENT DENSITY (2.0 OR LESS		/ACRE)	20	20	20	20	
	MEDIUM D	URBAN LOCAL ROADS I DEVELOPMENT DENSITY (2.1 TO 6 DWELLINGS/ACRE)			28	28	28	28	
			NC	-2%	50	107	198	333	Τ
				0%	47	99	181	300	T
MINIMUM HORIZONTAL			RC	2%	44	92	167	273	T
CURVE RADIUS				3%	43	89	160	261	T
(FEET)				4%	42	86	154	250	T
BY		(G)		5%	41	83	149	240	T
SUPERELEVATION				6%	39	81	144	231	T
RATE				7%	38	78	139	222	T
	8%			38	76	134	214	t	
		ADT 0 TO 100 (VEH/DAY)			65	90	115	135	T
STOPPING SIGHT DISTANCE (FEET) ADT		ADT 101 TO 400 (VEH/DA	ADT 101 TO 400 (VEH/DAY)		65	95	125	165	
	CREST VERTICAL	ADT 0 TO 100 (VEH/DAY)			2	4	7	9	
MINIMUM " K "	CURVE				2	5	8	13	
VALUES	SAG VERTICAL CURVE			10	17	26	37		
		LEVEL	-		9	8	7	7	Τ
		ROLLIN	IG		12	11	11	10	Τ
GRADE (%)		TERRAIN MOUNTAINOUS			17	16	15	14	T
		FOR SUPERELEVATION	SEE STANDA		GS RD11-SE S				

DESIGN NOTES

7

- (A) THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHALL BE THE SAME IN ALL SITUATIONS.
- (B) MAXIMUM 2(H):1(V) OR AS RECOMMENDED BY THE GEOTECHNICAL OFFICE. WHEN A 2(H):1(V) SLOPE IS USED, AND THE FILL HEIGHT EXCEEDS SIX FT. GUARDRAIL SHOULD BE CONSIDERED. WHERE RIGHT-OF-WAY IS NOT AN ISSUE. STANDARD DRAWING RD11-S-11 (CASE II) SLOPES MAY BE USED.
- (C) SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES.
- (D) SEE STANDARD DRAWING S-PL-6 FOR TYPICAL GUARDRAIL PLACEMENT.
- (E) SITE-SPECIFIC CONDITIONS AND ENGINEERING JUDGMENT OF THE DESIGNER SHOULD BE THE TWO PRIMARY DETERMINANTS OF THE APPROPRIATE CLEAR ZONE WIDTH FOR LOW-VOLUME LOCAL ROADS. AT LOCATIONS WHERE A CLEAR ZONE OF 6 FEET OR MORE IN WIDTH CAN BE PROVIDED AT LOW COST AND WITH MINIMUM SOCIAL/ENVIRONMENTAL IMPACT. SUCH CLEAR ZONE SHOULD BE CONSIDERED. WHERE PROVISION OF A CLEAR ZONE IS NOT PRACTICAL, NONE IS REQUIRED.
- (F) FOR BRIDGE PROJECTS WHERE THE TOTAL APPROACH ROADWAY WIDTH (TRAVELED WAY PLUS SHOULDERS) IS SURFACED, THAT SURFACE WIDTH SHOULD BE CARRIED ACROSS THE STRUCTURE. THE WIDTH OF THE BRIDGE CANNOT BE LESS THAN THE PROPOSED ROADWAY WIDTH SELECTED FROM TABLE 1. THE TOTAL APPROACH ROADWAY WIDTH CANNOT BE LESS THAN THE EXISTING ROADWAY WIDTH, AS DETERMINED ABOVE. HOWEVER, ON UNSURFACED RURAL ROADS, WITHOUT DEFINED TRAVELED WAY OR DEFINED SHOULDERS, THE WIDTH DETERMINED FROM TABLE 1 WILL SUFFICE.
- (G) FOR THE DESIGN OF SUPERELEVATION TRANSITIONS, USE THE SUPERELEVATION DESIGN SPEED LISTED DIRECTLY ABOVE THE SELECTED MINIMUM HORIZONTAL CURVE RADIUS. FOR EXISTING ROADS WHERE SUPERELEVATION IS NOT PRESENT AND NO SITE-SPECIFIC SAFETY PROBLEM IS KNOWN, SUPERELEVATION MAY NOT BE NECESSARY. REMOVAL OF NORMAL CROWN BY SUPERELEVATING THE ENTIRE ROADWAY AT THE NORMAL CROSS SLOPE MAY BE USED UNLESS SUPERELEVATION IS NEEDED AS DETERMINED BY THE DESIGNER. THE DESIGNER SHOULD ASSESS THE PROJECT SITE AND USE ENGINEERING JUDGEMENT WHEN MAKING THIS DETERMINATION. FOR UNPAVED ROADS, REMOVAL OF NORMAL CROWN BY SUPERELEVATING THE ENTIRE ROADWAY AT THE NORMAL CROSS SLOPE MAY BE USED OR SUPERELEVATION MAY BE ELIMINATED.
- (H) THESE STRUCTURES SHOULD BE ANALYZED INDIVIDUALLY, TAKING INTO CONSIDERATION THE CLEAR WIDTH PROVIDED, TRAFFIC VOLUMES, REMAINING LIFE OF THE STRUCTURE, PEDESTRIAN VOLUMES, SNOW STORAGE, DESIGN SPEED, ACCIDENT RECORD, AND OTHER PERTINENT FACTORS.
- (I) CURB-TO-CURB OR BETWEEN RAILS, WHICHEVER IS THE LESSER.
- (J) DESIGN SPEED SHOULD BE SELECTED BASED ON ACTUAL OR ANTICIPATED OPERATING SPEED AND CONDITIONS ON THE ROAD BEING DESIGNED.
- (K) DESIGN LOADING: ALL NEW AND REHABILITATED BRIDGES SHALL BE DESIGNED FOR HL-93 LOADING.
- (L) FOR NEW CONSTRUCTION OR RECONSTRUCTION PROJECTS: THE MINIMUM CLEAR WIDTH FOR NEW BRIDGES SHALL BE EQUAL TO THE FULL WIDTH OF THE APPROACH ROADWAY (CURB-TO-CURB OR FULL SHOULDER WIDTH AS APPLICABLE). WIDTH SHOULD BE AVAILABLE FOR FARM EQUIPMENT USE AS REQUIRED.

N LOADINGS (K) L
DESIGN LOADING (STRUCTURAL CAPACITY) OR EXISTING BRIDGES TO REMAIN IN PLACE
H-15
H-15

MINIMUM CLEAR ROADWAY WIDTHS AND DESIGN LOADINGS FOR NEW AND RECONSTRUCTED BRIDGES (SEE PAGE 5-7)

DESIGN ADT (VEH/DAY)	DESIGN LOADING	MINIMUM CLEAR ROADWAY WIDTH OF BRIDGE (F)
UNDER 400	HL-93	TRAVELED WAY + 4 FT. (2 FT. EACH SIDE)
400 TO 2,000	HL-93	TRAVELED WAY + 6 FT. (3 FT. EACH SIDE)
OVER 2,000	HL-93	APPROACH ROADWAY WIDTH

- ☆ SEE TABLE II FOR WIDTHS.

ROADWAY	JCTURAL CAPACITIES WIDTHS FOR EXISTIN IAIN IN PLACE (SEE PA	G BRIDGES

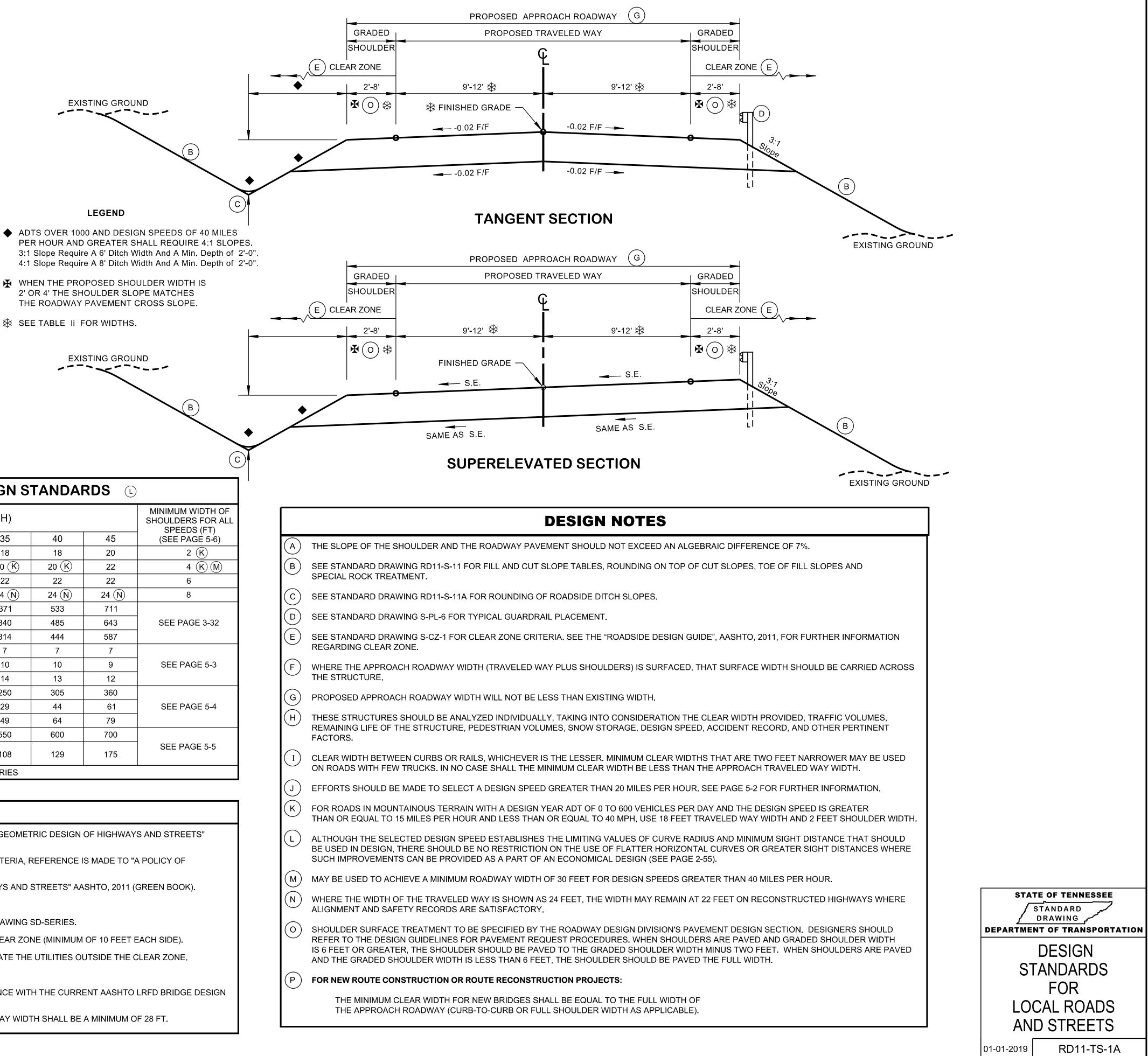
(VEH/DAY)	(STRUCTURAL CAPACITY)	
0 TO 50	H-15	20
50 TO 250	H-15	20
250 TO 1,500	H-15	22
1,500 TO 2,000	H-15	24
OVER 2,000	H-15	28

RUR	MINIMUM DESIGN SPEEDS FOR LOCAL RURAL ROADS (SEE PAGE 5-2)
	DESIGN SPEED (MPH) FOR SPECIFIED DESIGN ADT (VEH/DAY)

UNDER 50	50 TO 250	250 TO 400	400 TO 2,000	2,000 AND OVER		
30	30	40	50	50		
20(J)	30	30	40	40		
20(J)	20(J)	20(J)	30	30		
	50 30 20(J)	50 250 30 30 20(J) 30	50 250 400 30 30 40 20 J 30 30	50 250 400 2,000 30 30 40 50 20 J 30 30 40		

TABLE IILOCAL ROADS AND STREETS - DESIGN STANDARDS

				DESIG	N SPEEDS	(MPH)		
(FOR GIV	EN DESIGN SPEED)	15	20	25	30	35	40	
MINIMUM WIDTH OF	DESIGN ADT UNDER 400	18	18	18	18	18	18	
TRAVELED WAY IN	DESIGN ADT 400 - 1,500	20 K	20 (K)	20 (K)	20 (K)	20 (K)	20 K	
RURAL AREAS (FT)	DESIGN ADT 1,500 - 2,000	20	22	22	22	22	22	
(SEE PAGE 5-6)	DESIGN ADT OVER 2,000	22	24 (N)	24 (N)	24 (N)	24 (N)	24 (N)	2
MINIMUM RA	DIUS (FT) 0.04 MAX. S.E.	42	86	154	250	371	533	
MINIMUM RA	DIUS (FT) 0.06 MAX. S.E.	39	81	144	231	340	485	
MINIMUM RA	DIUS (FT) 0.08 MAX. S.E.	38	76	134	214	314	444	
	LEVEL TERRAIN	9	8	7	7	7	7	
MAXIMUM RURAL GRADES %	ROLLING TERRAIN	12	11	11	10	10	10	
	MOUNTAINOUS TERRAIN	17	16	15	14	14	13	
MINIMUM STOPF	PING SIGHT DISTANCE (FT)	80	115	155	200	250	305	
MINIMUM	CREST VERTICAL CURVE	3	7	12	19	29	44	
"K" VALUE	SAG VERTICAL CURVE	10	17	26	37	49	64	
DESIGN PASSI	NG SIGHT DISTANCE (FT)		400	450	500	550	600	
MINIMUM "K" VALUE	PASSING SIGHT DISTANCE FOR CREST VERTICAL CURVE		57	72	89	108	129	
	FOR SI	JPERELEVATI	ON SEE STAN	NDARD DRAW	INGS RD11-S	E SERIES		


		GENERAL NOTES
I	1	FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIG AASHTO, 2011 (GREEN BOOK).
	2	FOR URBAN AND SPECIAL PURPOSE ROADS (INCLUDING RECREATIONAL ROADS) DESIGN GUIDANCE AND CRITERIA, REFERENCE IS MADE GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK), PAGES 5-11 TO 5-34.
	3	PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO,
	$\overline{4}$	REFERENCE IS ALSO MADE TO THE "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
	5	FOR INTERSECTION SIGHT DISTANCE AT INTERSECTIONS SEE PAGES 9-28 THROUGH 9-55 AND STANDARD DRAWING SD-SERIES.
	6	IF NO ABOVE GROUND UTILITIES ARE INVOLVED, MINIMUM RIGHT-OF-WAY SHALL BE TRAVELED WAY PLUS CLEAR ZONE (MINIMUM OF 10
	7	IF ABOVE GROUND UTILITIES ARE INVOLVED, MINIMUM RIGHT-OF-WAY SHALL BE SUFFICIENT TO ACCOMMODATE THE UTILITIES OUTSIDE
	8	DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS TEN FEET.
	9	THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNNELS, AND OTHER STRUCTURES SHOULD BE IN ACCORDANCE WITH THE CURRENT AA SPECIFICATIONS. THE DESIGN LOADING SHOULD BE HL-93 CALIBRATED LIVE LOAD DESIGNATION.
	(10)	IF A BIKE ROUTE IS TO BE INCLUDED AS PART OF THE PROPOSED ROADWAY, THE PAVED APPROACH ROADWAY WIDTH SHALL BE A MINIM

dg

101

0

0

MINIMUM CLEAR ROADWAY WIDTHS AND DESIGN LOADINGS FOR NEW AND **RECONSTRUCTED BRIDGES (SEE PAGE 6-7)**

DESIGN ADT (VEH/DAY)	DESIGN LOADING	MINIMUM CLEAR ROADWAY WIDTH OF BRIDGE (F)
UNDER 400	HL-93	TRAVELED WAY + 4 FT. (2 FT. EACH SIDE)
400 TO 1,500	HL-93	TRAVELED WAY + 6 FT. (3 FT. EACH SIDE)
1,500 TO 2,000	HL-93	TRAVELED WAY + 8 FT. (4 FT. EACH SIDE)
OVER 2,000	HL-93	APPROACH ROADWAY WIDTH

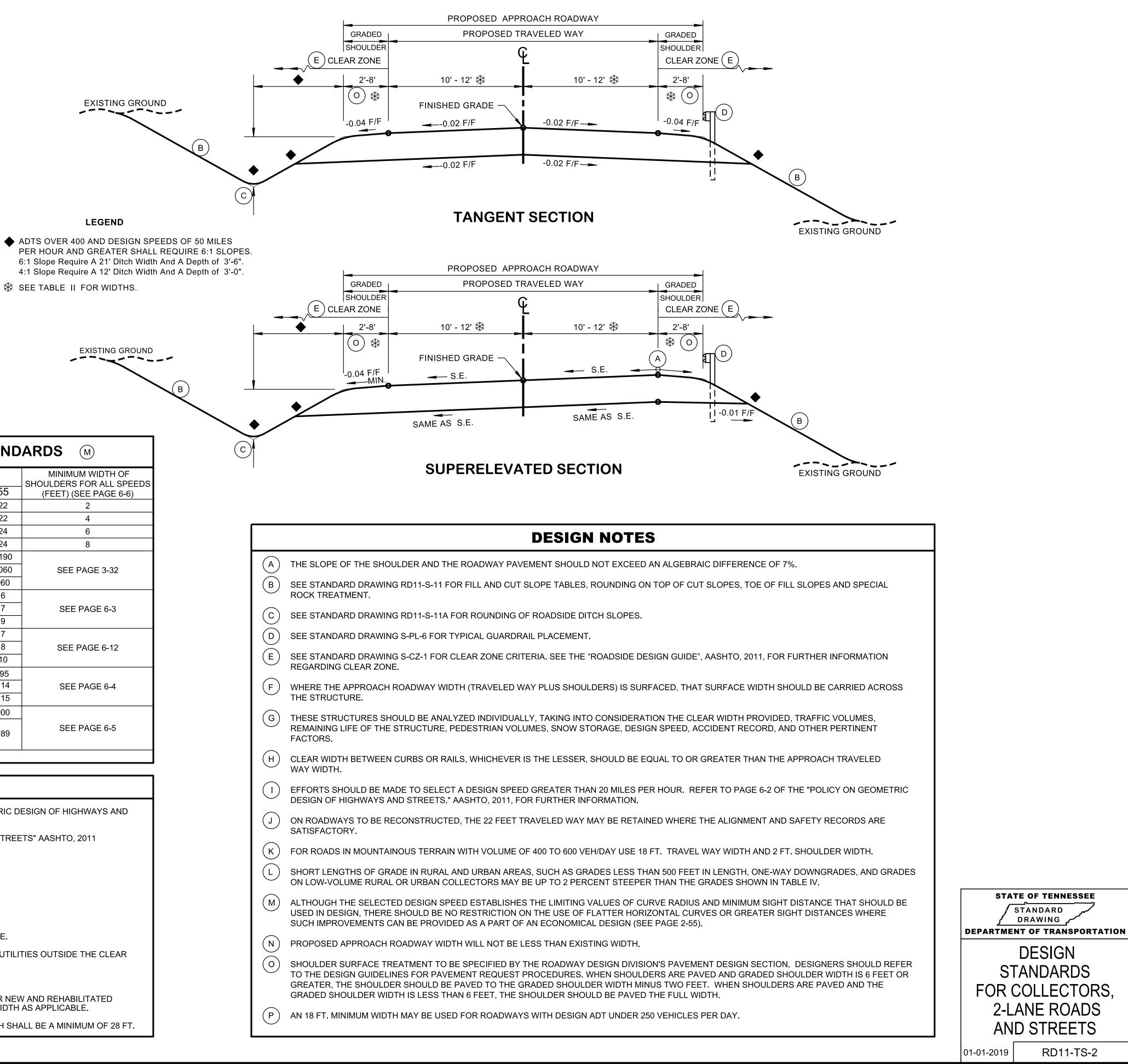
MINIMUM STRUCTURAL CAPACITIES AND MINIMUM ROADWAY WIDTHS FOR BRIDGES TO REMAIN IN PLACE (SEE PAGE 6-8) G

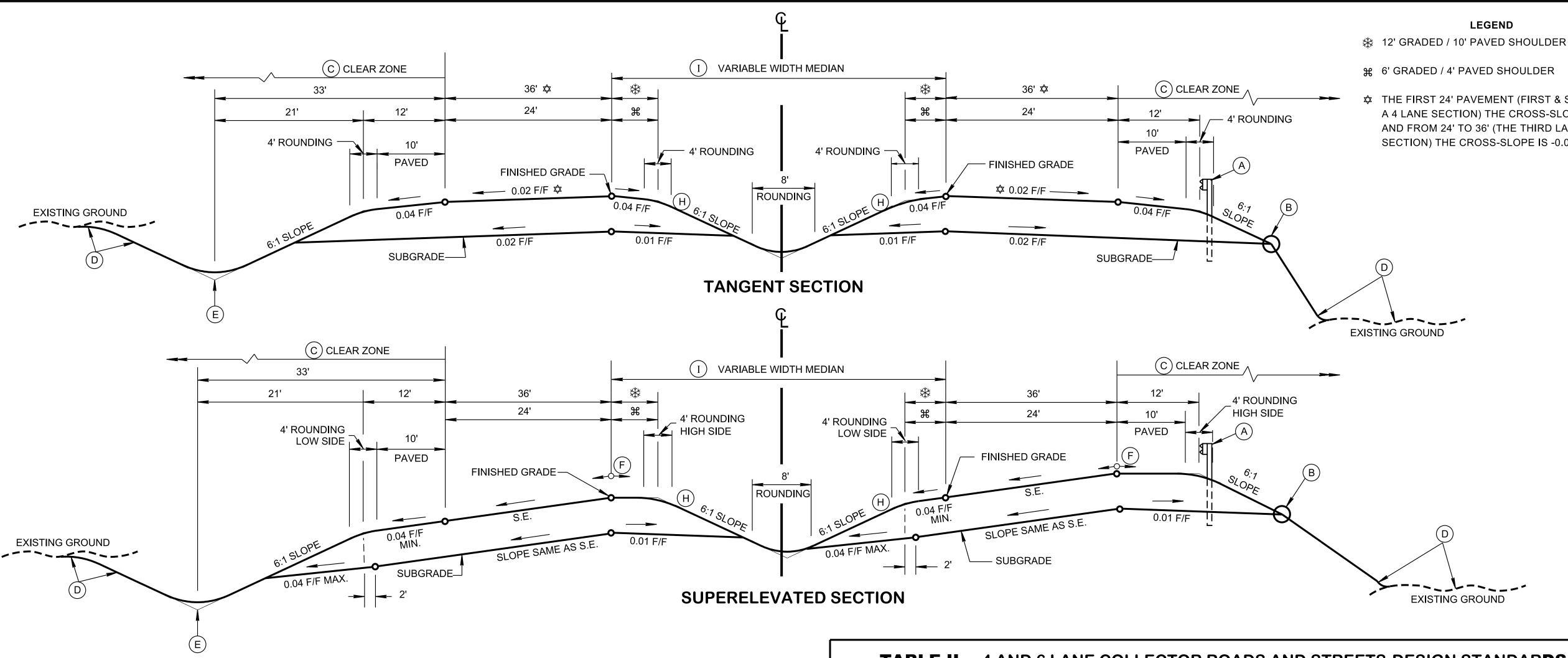
DESIGN ADT (VEH/DAY)	DESIGN LOADING (STRUCTURAL CAPACITY)	MINIMUM CLEAR ROADWAY WIDTH (FT)
UNDER 400	H-15	22
400 TO 1,500	H-15	22
1,500 TO 2,000	H-15	24
OVER 2,000	H-15	28

TABLE I MINIMUM DESIGN SPEEDS FOR RURAL COLLECTOR ROADS (SEE PAGE 6-2)

DESIGN SPEED (MPH) FOR SPECIFIED DESIGN ADT (VEH/DAY)

		PH) FOR SPECIFIED DES	IGN ADT (VEN/DAT)
TYPE OF TERRAIN	0 TO 400	400 TO 2,000	OVER 2,000
LEVEL	40	50	60
ROLLING	30	40	50
MOUNTAINOUS	20 (1)	30	40


TABLE II COLLECTOR ROADS AND STREETS - DESIGN STANDARDS


DESIG	N STANDARDS	DESIGN SPEEDS (MPH)								
(FOR GIVE	N DESIGN SPEED)	20	25	30	35	40	45	50	55	(FEET)
MINIMUM WIDTH OF	DESIGN ADT UNDER 400	20 P	20 P	20 P	20 P	20 P	20	20	22	
TRAVELED WAY IN	DESIGN ADT 400 - 1,500	20 K	20 K	20 K	20 K	20 K	22	22	22	
RURAL AREAS (FT.)	DESIGN ADT 1,500 - 2,000	20	22	22	22	22	22	22	24	
J (SEE PAGE 6-6) N	DESIGN ADT OVER 2,000	22	24	24	24	24	24	24	24	
MINIMUM RAD	DIUS (FT.) 0.04 MAX. S.E.	86	154	250	371	533	711	926	1190	
MINIMUM RAD	NUS (FT.) 0.06 MAX. S.E.	81	144	231	340	485	643	833	1060	SE
MINIMUM RAD	NUS (FT.) 0.08 MAX. S.E.	76	134	214	314	444	587	758	960	1
	LEVEL TERRAIN	7	7	7	7	7	7	6	6	
	ROLLING TERRAIN	10	10	9	9	8	8	7	7	SE
GRADES /0 (L)	MOUNTAINOUS TERRAIN	12	11	10	10	10	10	9	9	7
	LEVEL TERRAIN	9	9	9	9	9	8	7	7	
	ROLLING TERRAIN	12	12	11	10	10	9	8	8	SEI
GRADES /0 (L)	MOUNTAINOUS TERRAIN	14	13	12	12	12	11	10	10	1
MINIMUM STOP	PING SIGHT DISTANCE (FT.)	115	155	200	250	305	360	425	495	
	CREST VERTICAL CURVE	7	12	19	29	44	61	84	114	SE
MINIMUM "K" VALUE	SAG VERTICAL CURVE	17	26	37	49	64	79	96	115	1
DESIGN PASSING	SIGHT DISTANCE (FT.)	400	450	500	550	600	700	800	900	
MINIMUM "K" VALUE	PASSING SIGHT DISTANCE FOR CREST VERTICAL CURVE	57	72	89	108	129	175	229	289	SE
	FOR SUPE	RELEVAT	ION SEE S	STANDARI	D DRAWIN	IGS RD11	-SE SER	IES	·	·

GENERAL NOTES

FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK). (2) PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK), UNLESS OTHERWISE NOTED. REFERENCE SHOULD ALSO BE MADE TO THE "ROADSIDE DESIGN GUIDE," AASHTO, 2011. FOR URBAN DESIGN GUIDANCE AND CRITERIA, SEE PAGES 6-11 THROUGH 6-20. DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS FIFTEEN FEET. FOR RURAL INTERSECTION DESIGN, SEE PAGE 6-9. IF NO ABOVE GROUND UTILITIES ARE INVOLVED, MINIMUM RIGHT-OF-WAY SHALL BE TRAVELED WAY PLUS CLEAR ZONE. IF ABOVE GROUND UTILITIES ARE INVOLVED, MINIMUM RIGHT-OF-WAY SHALL BE SUFFICIENT TO ACCOMMODATE THE UTILITIES OUTSIDE THE CLEAR ZONE. FOR URBAN INTERSECTION DESIGN, SEE PAGE 6-18, (9) ALL NEW AND REHABILITATED BRIDGES SHALL BE DESIGNED FOR HL-93 LIVE LOADS. THE MINIMUM CLEAR WIDTH FOR NEW AND REHABILITATED BRIDGES SHALL BE EQUAL TO THE FULL WIDTH OF THE APPROACH ROADWAY, CURB-TO-CURB OR FULL SHOULDER WIDTH AS APPLICABLE. (11)IF A BIKE ROUTE IS TO BE INCLUDED AS PART OF THE PROPOSED ROADWAY, THE PAVED APPROACH ROADWAY WIDTH SHALL BE A MINIMUM OF 28 FT.

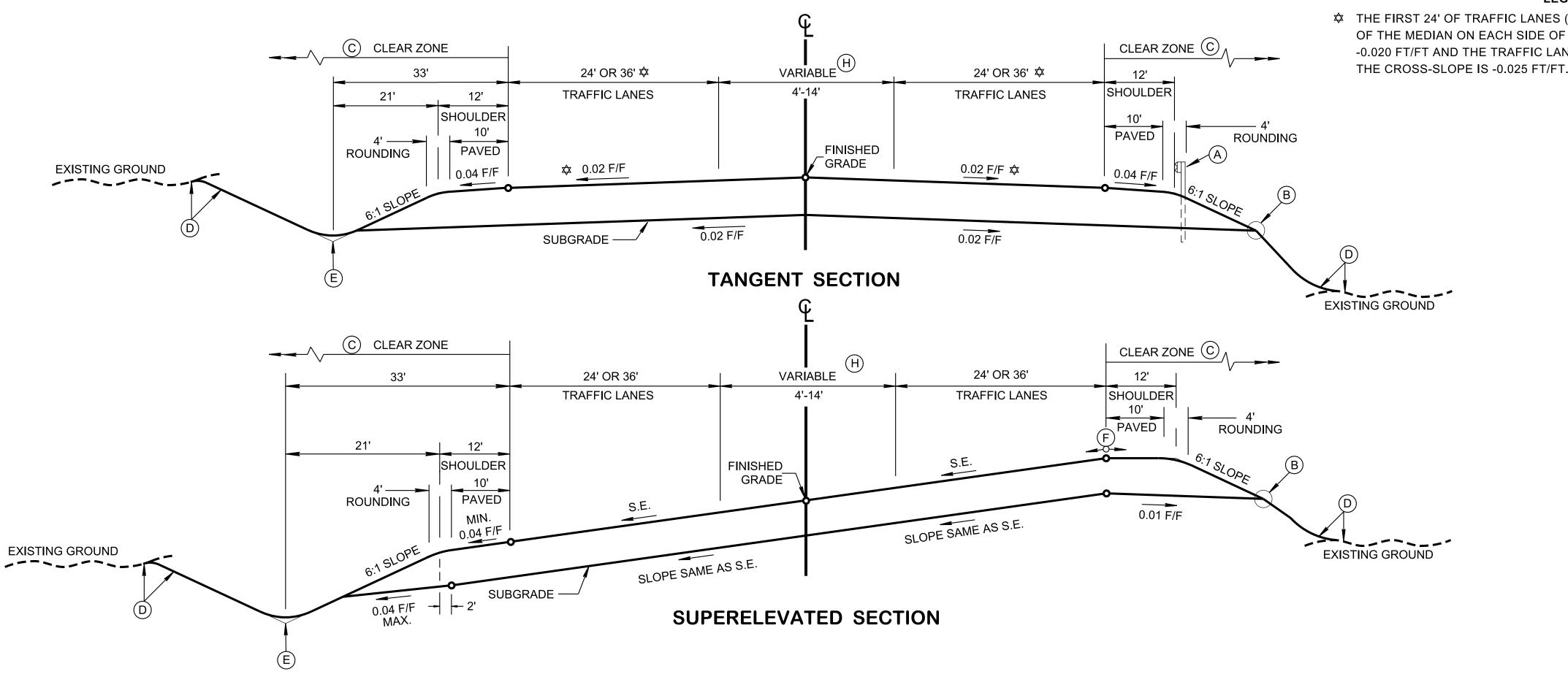
dg

TABLE I MINIMUM DESIGN SPEEDS FOR RURAL COLLECTOR ROADS (SEE PAGE 6-2)

TYPE OF TERRAIN	DESIGN SPEED (MPH)
LEVEL	60
ROLLING	50
MOUNTAINOUS	40

GENERAL NOTES

- (1)FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK).
- (2) PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK), UNLESS OTHERWISE NOTED.
- (3) REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
- (4) DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS FIFTEEN FEET.
- (5) IF NO ABOVE GROUND UTILITIES ARE INVOLVED, MINIMUM RIGHT-OF-WAY SHALL BE TRAVELED WAY PLUS CLEAR ZONE.
- (6) IF ABOVE GROUND UTILITIES ARE INVOLVED, MINIMUM RIGHT-OF-WAY SHALL BE SUFFICIENT TO ACCOMMODATE THE UTILITIES OUTSIDE THE CLEAR ZONE.
- ALL NEW AND REHABILITATED BRIDGES SHALL BE DESIGNED FOR HL-93 DESIGN LIVE LOADS. THE MINIMUM CLEAR WIDTH FOR NEW AND REHABILITATED BRIDGES SHALL BE EQUAL TO THE FULL WIDTH OF THE APPROACH ROADWAY, CURB-TO-CURB OR FULL SHOULDER WIDTH AS APPLICABLE.
- (8) FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HAVE ADEQUATE STRUCTURAL STRENGTH AND A WIDTH AT LEAST EQUAL TO THE WIDTH OF THE TRAVELED WAY PLUS 2 FEET CLEARANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE WIDENING OR REPLACEMENT IF THEY DO NOT PROVIDE AT LEAST 3 FEET CLEARANCE ON EACH SIDE OR DO NOT PROVIDE HL-93 LIVE LOADING CAPACITY. AS AN INTERIM MEASURE, ALL BRIDGES THAT ARE LESS THAN FULL WIDTH SHOULD BE CONSIDERED FOR SPECIAL NARROW BRIDGE TREATMENTS SUCH AS SIGNING AND PAVEMENT MARKING.
- (9) FOR ADDITIONAL URBAN DESIGN GUIDANCE AND CRITERIA, SEE PAGES 6-11 THROUGH 6-20.


TABLE	II 4 AND 6 LANE COLLECTOR ROA	ADS AND	STRE	ETS-	DESI	GN S	TAN	DAR	DS G
	DESIGN STANDARDS		D	ESIGN	SPEE	DS (MF	PH)		
	(FOR GIVEN DESIGN SPEED)	30	35	40	45	50	55	60	
	MINIMUM RADIUS (FEET) 0.04 MAX. S.E.	250	371	533	711	926	1190	1500	
MINIMUM RADIUS (FEET) 0.06 MAX. S.E. MINIMUM RADIUS (FEET) 0.08 MAX. S.E.		231	340	485	643	833	1060	1330	SEE PAGE 3-32
		214	314	444	587	758	960	1200	
	LEVEL TERRAIN	7	7	7	7	6	6	5	SEE PAGE 6-3
MAXIMUM RURAL GRADES %	ROLLING TERRAIN	9	9	8	8	7	7	6	
	MOUNTAINOUS TERRAIN	10	10	10	10	9	9	8	
	LEVEL TERRAIN	9	9	9	8	7	7	6	
MAXIMUM URBAN GRADES %	ROLLING TERRAIN	11	10	10	9	8	8	7	SEE PAGE 6-12
	MOUNTAINOUS TERRAIN	12	12	12	11	10	10	9	
	MINIMUM STOPPING SIGHT DISTANCE (FEET)	200	250	305	360	425	495	570	
MINIMUM "K" VALUE	CREST VERTICAL CURVE	19	29	44	61	84	114	151	
	SAG VERTICAL CURVE	37	49	64	79	96	115	136	SEE PAGE 6-4
	FOR SUPERELEVATION SEE STANDA	ARD DRAWINGS	RD11-S	e serie	S				

DESIGN NOTES

- (A)SEE STANDARD DRAWING S-PL-6 FOR TYPICAL GUARDRAIL PLACEMENT
- B SEE STANDARD DRAWING RD11-S-11 FOR ROUNDING DETAILS.
- \odot SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. SEE THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011, FOR FURTHER INFORMATION **REGARDING CLEAR ZONES.**
- \bigcirc SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE TABLES, ROUNDING ON TOP OF CUT SLOPES AND TOE OF FILL SLOPES, AND SPECIAL ROCK CUT TREATMENT.
- E SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES.
- (F) THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHOULD NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7%.
- G ALTHOUGH THE SELECTED DESIGN SPEED ESTABLISHES THE LIMITING VALUES OF CURVE RADIUS AND MINIMUM SIGHT DISTANCE THAT SHOULD BE USED IN DESIGN, THERE SHOULD BE NO RESTRICTION ON THE USE OF FLATTER HORIZONTAL CURVES OR GREATER SIGHT DISTANCES WHERE SUCH IMPROVEMENTS CAN BE PROVIDED AS A PART OF AN ECONOMICAL DESIGN (SEE PAGE 2-55).
- (H)6:1 SLOPES ARE DESIRABLE. SLOPES RANGING BETWEEN 6:1 AND 4:1 MAY BE USED UNDER SPECIFIC ADVERSE CONDITIONS SUCH AS TO FACILITATE DRAINAGE OR TO ESTABLISH A LEFT TURN LANE.
- (I)48 FEET MINIMUM. 64 FEET MINIMUM FOR A SIX LANE SECTION.

THE FIRST 24' PAVEMENT (FIRST & SECOND LANE ON A 4 LANE SECTION) THE CROSS-SLOPE IS -0.020 FT/FT AND FROM 24' TO 36' (THE THIRD LANE ON A 6 LANE SECTION) THE CROSS-SLOPE IS -0.025 FT/FT.

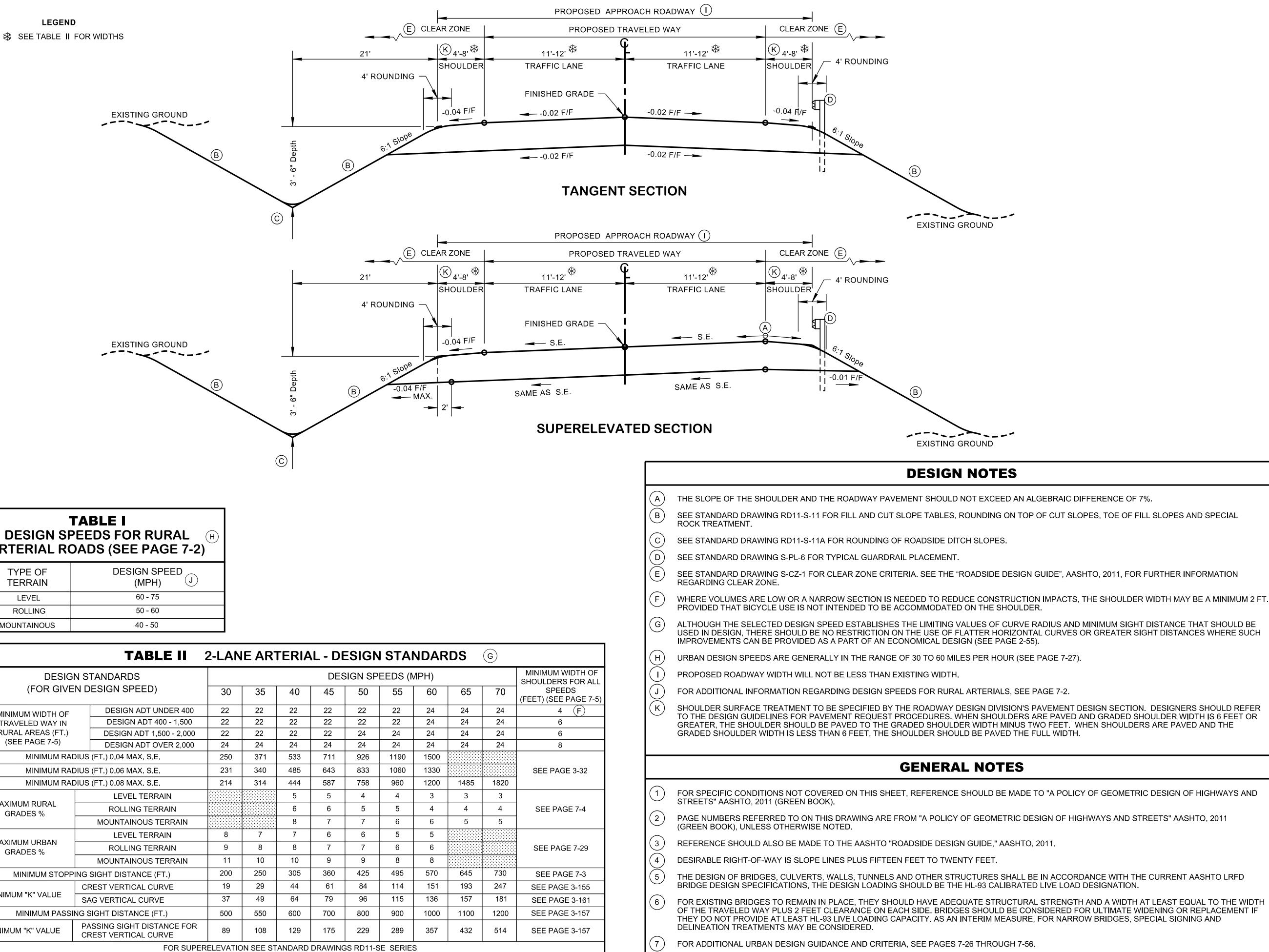
TABLE I MINIMUM DESIGN SPEEDS FOR RURAL COLLECTOR ROADS (SEE PAGE 6-2)

(MPH)
60
50
40

GENERAL NOTES

- (1)FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK).
- 2 PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK), UNLESS OTHERWISE NOTED.
- (3) REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
- (4) DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS FIFTEEN FEET.
- (5) IF NO ABOVE GROUND UTILITIES ARE INVOLVED, MINIMUM RIGHT-OF-WAY SHALL BE TRAVELED WAY PLUS CLEAR ZONE.
- 6 IF ABOVE GROUND UTILITIES ARE INVOLVED, MINIMUM RIGHT-OF-WAY SHALL BE SUFFICIENT TO ACCOMMODATE THE UTILITIES OUTSIDE THE CLEAR ZONE.
- (7)ALL NEW AND REHABILITATED BRIDGES SHALL BE DESIGNED FOR HL-93 DESIGN LIVE LOADS. THE MINIMUM CLEAR WIDTH FOR NEW AND REHABILITATED BRIDGES SHALL BE EQUAL TO THE FULL WIDTH OF THE APPROACH ROADWAY, CURB-TO-CURB OR FULL SHOULDER WIDTH AS APPLICABLE.
- (8) FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HAVE ADEQUATE STRUCTURAL STRENGTH AND A WIDTH AT LEAST EQUAL TO THE WIDTH OF THE TRAVELED WAY PLUS 2 FEET CLEARANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE WIDENING OR REPLACEMENT IF THEY DO NOT PROVIDE AT LEAST 3 FEET CLEARANCE ON EACH SIDE OR DO NOT PROVIDE HL-93 LIVE LOADING CAPACITY. AS AN INTERIM MEASURE, ALL BRIDGES THAT ARE LESS THAN FULL WIDTH SHOULD BE CONSIDERED FOR SPECIAL NARROW BRIDGE TREATMENTS SUCH AS SIGNING AND PAVEMENT MARKING.
- (9) FOR ADDITIONAL URBAN DESIGN GUIDANCE AND CRITERIA, SEE PAGES 6-11 THROUGH 6-20.

	DESIGN STANDARDS		D	ESIGN	SPEE	DS (MF	PH)			
	(FOR GIVEN DESIGN SPEED)	30	35	40	45	50	55	60		
	MINIMUM RADIUS (FEET) 0.04 MAX. S.E.	250	371	533	711	926	1190	1500		
	231	340	485	643	833	1060	1330	SEE PAGE 3-32		
	214	314	444	587	758	960	1200			
	LEVEL TERRAIN	7	7	7	7	6	6	5		
MAXIMUM RURAL GRADES %	ROLLING TERRAIN	9	9	8	8	7	7	6		
	MOUNTAINOUS TERRAIN	10	10	10	10	9	9	8		
	LEVEL TERRAIN	9	9	9	8	7	7	6		
MAXIMUM URBAN GRADES %	ROLLING TERRAIN	ROLLING TERRAIN 11 10		10	9	8	8	7	SEE PAGE 6-12	
	MOUNTAINOUS TERRAIN	12	12	12	11	10	10	9		
·	MINIMUM STOPPING SIGHT DISTANCE (FEET)	200	250	305	360	425	495	570		
MINIMUM "K" VALUE	CREST VERTICAL CURVE	19	29	44	61	84	114	151		
	SAG VERTICAL CURVE	37	49	64	79	96	115	136	SEE PAGE 6-4	

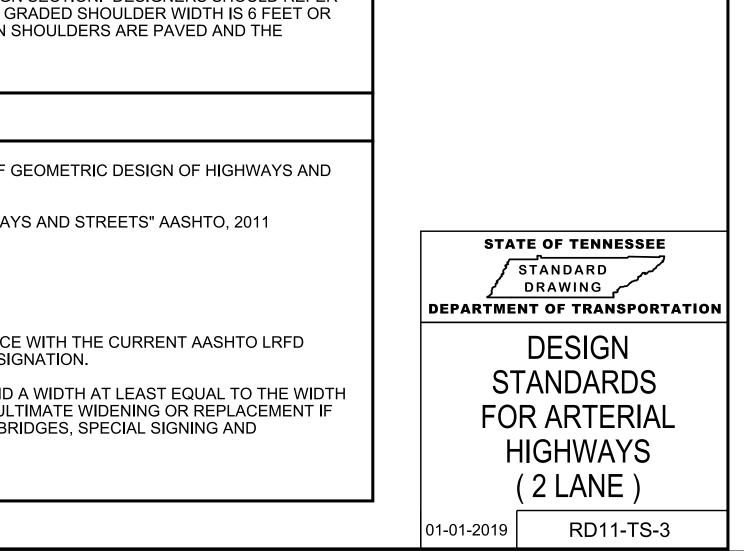

DESIGN NOTES

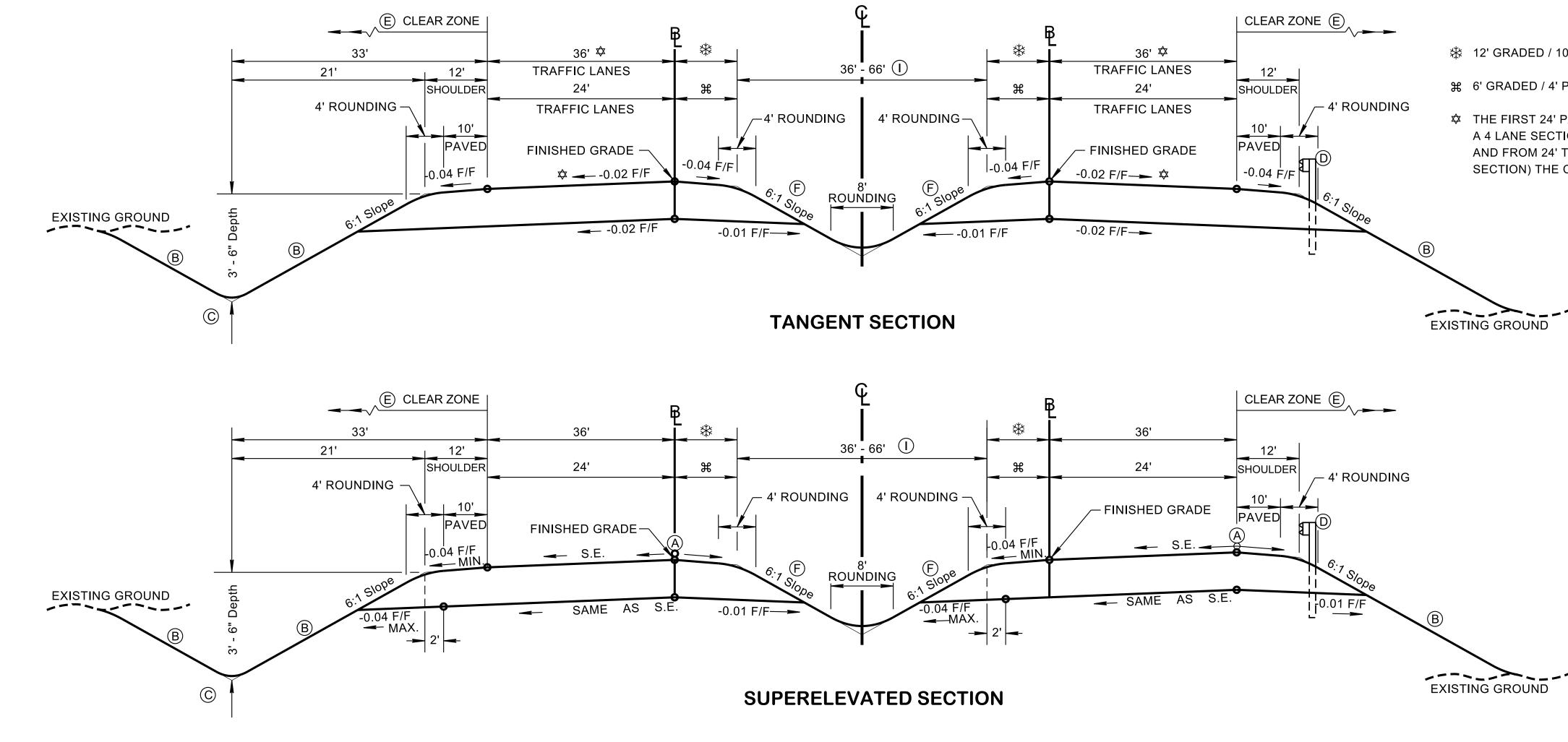
- (A)SEE STANDARD DRAWING S-PL-6 FOR TYPICAL GUARDRAIL PLACEMENT.
- (B) SEE STANDARD DRAWING RD11-S-11 FOR ROUNDING DETAILS.
- \odot SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. SEE THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011, FOR FURTHER INFORMATION REGARDING CLEAR ZONES.
- SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE TABLES, ROUNDING ON TOP OF CUT SLOPES AND TOE OF FILL SLOPES, AND SPECIAL ROCK CUT TREATMENT. \bigcirc
- (E) SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES.
- F THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHOULD NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7%.
- G ALTHOUGH THE SELECTED DESIGN SPEED ESTABLISHES THE LIMITING VALUES OF CURVE RADIUS AND MINIMUM SIGHT DISTANCE THAT SHOULD BE USED IN DESIGN, THERE SHOULD BE NO RESTRICTION ON THE USE OF FLATTER HORIZONTAL CURVES OR GREATER SIGHT DISTANCES WHERE SUCH IMPROVEMENTS CAN BE PROVIDED AS A PART OF AN ECONOMICAL DESIGN (SEE PAGE 2-55).
- (H)4 FEET MEDIAN WIDTH ALLOWED UNDER RESTRICTIVE CONDITIONS. 12 FEET MINIMUM WIDTH IS PREFERRED.

LEGEND

☆ THE FIRST 24' OF TRAFFIC LANES (FIRST & SECOND LANE AND ONE HALF OF THE MEDIAN ON EACH SIDE OF THE ROADWAY) THE CROSS-SLOPE IS -0.020 FT/FT AND THE TRAFFIC LANES FROM 24' TO 36' (THE THIRD LANE)

TABLE IDESIGN SPEEDS FOR RURALHARTERIAL ROADS (SEE PAGE 7-2)							
TYPE OF TERRAIN	DESIGN SPEED (MPH) J						
LEVEL	60 - 75						
ROLLING	50 - 60						
MOUNTAINOUS	40 - 50						


TABLE II	2-LANE ARTERIAL -	- DESIGN STANDARDS	(
IADLL II		- DLOIGN STANDANDS	


						_0101				\bigcirc
	N STANDARDS				DES	SIGN SP	EEDS (N	ИРН)		
(FOR GIVE	N DESIGN SPEED)	30	35	40	45	50	55	60	65	70
MINIMUM WIDTH OF	DESIGN ADT UNDER 400	22	22	22	22	22	22	24	24	24
TRAVELED WAY IN	DESIGN ADT 400 - 1,500	22	22	22	22	22	22	24	24	24
RURAL AREAS (FT.)	DESIGN ADT 1,500 - 2,000	22	22	22	22	24	24	24	24	24
(SEE PAGE 7-5)	DESIGN ADT OVER 2,000	24	24	24	24	24	24	24	24	24
MINIMUM RAI	DIUS (FT.) 0.04 MAX. S.E.	250	371	533	711	926	1190	1500		
MINIMUM RADIUS (FT.) 0.06 MAX. S.E.			340	485	643	833	1060	1330		
MINIMUM RAI	DIUS (FT.) 0.08 MAX. S.E.	214	314	444	587	758	960	1200	1485	1820
	LEVEL TERRAIN			5	5	4	4	3	3	3
MAXIMUM RURAL GRADES %	ROLLING TERRAIN			6	6	5	5	4	4	4
	MOUNTAINOUS TERRAIN		• • • • • • • • • • • • • • • • • • • •	8	7	7	6	6	5	5
	LEVEL TERRAIN	8	7	7	6	6	5	5		
MAXIMUM URBAN GRADES %	ROLLING TERRAIN	9	8	8	7	7	6	6		
	MOUNTAINOUS TERRAIN	11	10	10	9	9	8	8		
MINIMUM STOPF	PING SIGHT DISTANCE (FT.)	200	250	305	360	425	495	570	645	730
	CREST VERTICAL CURVE	19	29	44	61	84	114	151	193	247
MINIMUM "K" VALUE	SAG VERTICAL CURVE	37	49	64	79	96	115	136	157	181
MINIMUM PASSI	MINIMUM PASSING SIGHT DISTANCE (FT.)		550	600	700	800	900	1000	1100	1200
MINIMUM "K" VALUE	PASSING SIGHT DISTANCE FOR CREST VERTICAL CURVE	89	108	129	175	229	289	357	432	514
	FOR SUPER	RELEVATIO	ON SEE ST	ANDARD	DRAWING	SS RD11-S	SE SERIE	S		

NOT TO SCALE

LLP

	MINIMUM WIDTH OF
	SHOULDERS FOR ALL
)	SPEEDS
	(FEET) (SEE PAGE 7-5
	4 (F)
	6
	6
	8
	SEE PAGE 3-32
0	
	SEE PAGE 7-4
	SEE PAGE 7-29
)	SEE PAGE 7-3
7	SEE PAGE 3-155
1	SEE PAGE 3-161
0	SEE PAGE 3-157
1	SEE PAGE 3-157

TABLE I **DESIGN SPEEDS FOR RURAL** ARTERIAL ROADS (SEE PAGE 7-2)(H)

TYPE OF TERRAIN	DESIGN SPEED (MPH)
LEVEL	60-70
ROLLING	50-60
MOUNTAINOUS	40-50

TA	ABLE II 4 AND 6	LAN	E AR1	ERIA	AL - D	ESIG	N ST	AND	ARD	S (G)	
DES	IGN STANDARDS		D	ESIGN	SPEE	DS (MP	H)				REMARKS
(FOR GIV	/EN DESIGN SPEED)	30	35	40	45	50	55	60	65	70	
MINIMUM RADIU	JS (FEET) 0.04 MAX. S.E.	250	371	533	711	926	1190	1500			
MINIMUM RADIL	JS (FEET) 0.06 MAX. S.E.	231	340	485	643	833	1060	1330			SEE PAGE 3-32
MINIMUM RADIU	JS (FEET) 0.08 MAX. S.E.	214	314	444	587	758	960	1200	1480	1810	
	LEVEL TERRAIN			5	5	4	4	3	3	3	
MAXIMUM RURAL GRADES %	ROLLING TERRAIN			6	6	5	5	4	4	4	SEE PAGE 7-4
	MOUNTAINOUS TERRAIN			8	7	7	6	6	5	5	
MAXIMUM URBAN	LEVEL TERRAIN	8	7	7	6	6	5	5			
GRADES %	ROLLING TERRAIN	9	8	8	7	7	6	6			SEE PAGE 7-29
	MOUNTAINOUS TERRAIN	11	10	10	9	9	8	8			
MINIMUM STOPPIN	MINIMUM STOPPING SIGHT DISTANCE (FEET)			305	360	425	495	570	645	730	SEE PAGE 7-3
MINIMUM "K" VALUE	CREST VERTICAL CURVE	19	29	44	61	84	114	151	193	247	SEE PAGE 3-155
	SAG VERTICAL CURVE	37	49	64	79	96	115	136	157	181	SEE PAGE 3-161
	FOR SUPEREL	EVATIO	N SEE S	TANDAF	D DRAV	VINGS R	D11-SE	SERIES			

DESIGN NOTES

- (A) THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHOULD NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7%.
- (B) SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE TABLES, ROUNDING ON TOP OF CUT SLOPES, TOE OF FILL SLOPE ROCK TREATMENT.
- (\mathbf{C}) SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES.
- (D) SEE STANDARD DRAWING S-PL-6 FOR TYPICAL GUARDRAIL PLACEMENT.
- (E) SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. SEE THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011, FOR FURTHER **REGARDING CLEAR ZONE.**
- (F) 6:1 SLOPES ARE DESIRABLE. SLOPES RANGING BETWEEN 6:1 AND 4:1 MAY BE USED UNDER SPECIFIC ADVERSE CONDITIONS SUC FACILITATE DRAINAGE OR TO ESTABLISH A LEFT TURN LANE.
- (G) ALTHOUGH THE SELECTED DESIGN SPEED ESTABLISHES THE LIMITING VALUES OF CURVE RADIUS AND MINIMUM SIGHT DISTANC SHOULD BE USED IN DESIGN, THERE SHOULD BE NO RESTRICTION ON THE USE OF FLATTER HORIZONTAL CURVES OR GREATER DISTANCES WHERE SUCH IMPROVEMENTS CAN BE PROVIDED AS A PART OF AN ECONOMICAL DESIGN (SEE PAGE 2-55).
- (H) URBAN DESIGN SPEEDS ARE GENERALLY IN THE RANGE OF 30 TO 60 MILES PER HOUR (SEE PAGE 7-27).
- (I) SEE TABLE III FOR MEDIAN WIDTHS.

190101.dgn

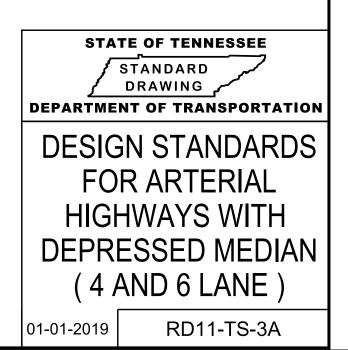
01

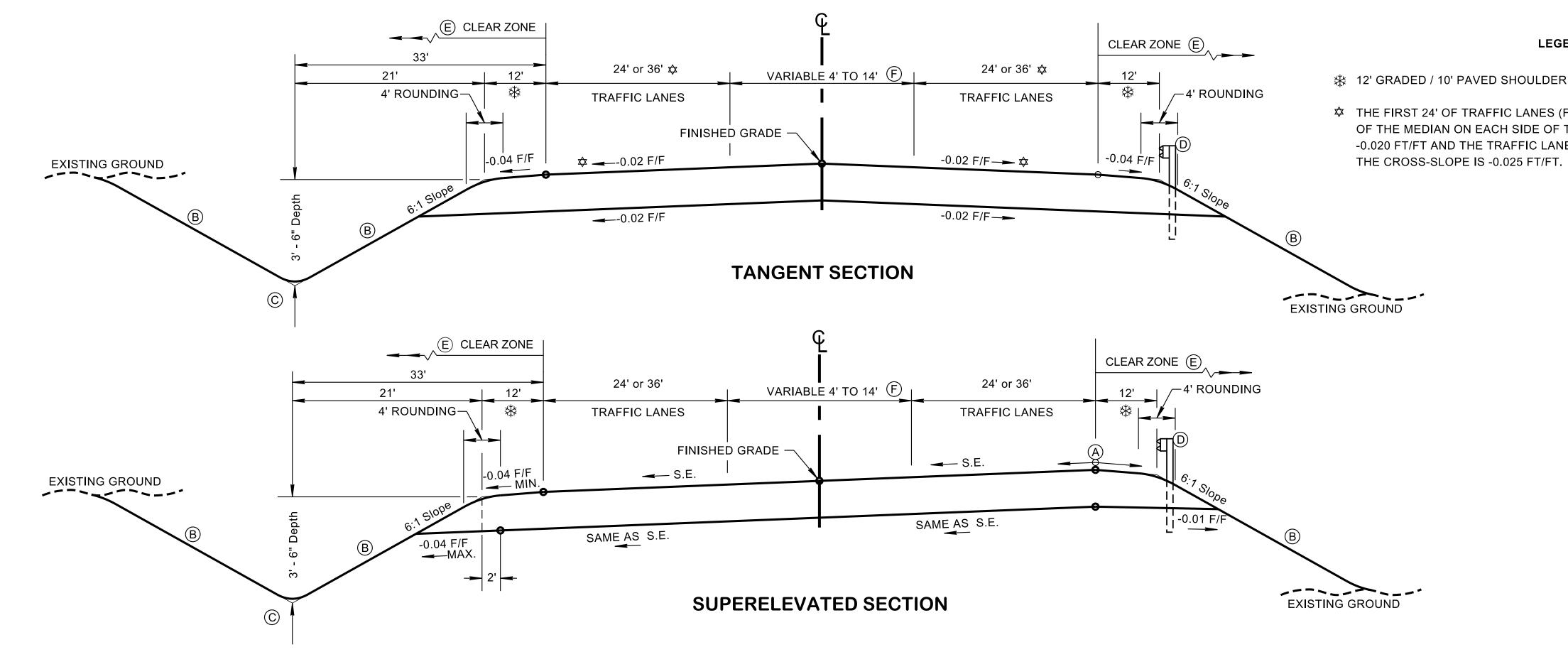
 \triangleleft S

Δ К

TABLE III MEDIAN WIDTHS									
MINIMUM MEDIAN WIDTH (FT)	URBAN/ RURAL	# LANES	SPEED (MPH)						
36' MINIMUM	URBAN	4	35-55						
	URBAN	6	35-55						
48' MINIMUM	RURAL	4	40-70						
66' MINIMUM	RURAL	6	40-70						

		GENERAL NOTES
	1	FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOM STREETS" AASHTO, 2011 (GREEN BOOK).
PES AND SPECIAL	2	PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AN UNLESS OTHERWISE NOTED.
	3	REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
ER INFORMATION	4	DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS FIFTEEN FEET TO TWENTY FEET.
	5	THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNNELS AND OTHER STRUCTURES SHALL BE IN ACCORDANCE WIT DESIGN SPECIFICATIONS, THE DESIGN LOADING SHOULD BE THE HL-93 CALIBRATED LIVE LOAD DESIGNATION.
JCH AS TO NCE THAT ER SIGHT	6	FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HAVE ADEQUATE STRUCTURAL STRENGTH AND A WI THE TRAVELED WAY PLUS 2 FEET CLEARANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE DO NOT PROVIDE AT LEAST HL-93 LIVE LOADING CAPACITY. AS AN INTERIM MEASURE, FOR NARROW BRIDGES, SPI TREATMENTS MAY BE CONSIDERED.
	$\overline{7}$	FOR ADDITIONAL URBAN DESIGN GUIDANCE AND CRITERIA, SEE PAGES 7-26 THROUGH 7-56.
	8	MINIMUM PASSING SIGHT DISTANCE IS NOT APPLICABLE FOR FOUR AND SIX LANE DIVIDED HIGHWAYS.


LEGEND


※ 12' GRADED / 10' PAVED SHOULDER

₩ 6' GRADED / 4' PAVED SHOULDER

☆ THE FIRST 24' PAVEMENT (FIRST & SECOND LANE ON A 4 LANE SECTION) THE CROSS-SLOPE IS -0.020 FT/FT AND FROM 24' TO 36' (THE THIRD LANE ON A 6 LANE SECTION) THE CROSS-SLOPE IS -0.025 FT/FT

DMETRIC DESIGN OF HIGHWAYS AND AND STREETS" AASHTO, 2011 (GREEN BOOK), VITH THE CURRENT AASHTO LRFD BRIDGE VIDTH AT LEAST EQUAL TO THE WIDTH OF E WIDENING OR REPLACEMENT IF THEY SPECIAL SIGNING AND DELINEATION

TABLE I DESIGN SPEEDS FOR RURAL ARTERIAL ROADS (SEE PAGE 7-2)(H)

TYPE OF TERRAIN	DESIGN SPEED (MPH)
LEVEL	60-70
ROLLING	50-60
MOUNTAINOUS	40-50

Т	ABLE II	4 A
DES	IGN STANDAF	RDS
(FOR GI	VEN DESIGN	SPEED
MINIMUM RADIU	JS (FEET) 0.04 M	AX. S.E.
MINIMUM RADIU	JS (FEET) 0.06 M	AX. S.E.
MINIMUM RADIU	JS (FEET) 0.08 M	AX. S.E.
	LEVEL T	ERRAIN
MAXIMUM RURAL GRADES %	ROLLING	TERRAIN
	MOUNTAINO	US TERR
	LEVEL T	ERRAIN
MAXIMUM URBAN GRADES %	ROLLING	TERRAIN
	MOUNTAINO	US TERR
MINIMUM STOPPIN	NG SIGHT DISTAN	NCE (FEE
MINIMUM "K" VALUE	CREST VERT	ICAL CU
	SAG VERTIO	CAL CUR
		FOR SUP

DESIGN NOTES (A) THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHOULD NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7%. (B) SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE TABLES. ROUNDING ON TOP OF CUT SLOPES AND TOE ROUNDING SLOPES AND TOE OF FILL SLOPES SPECIAL ROCK TREATMENT AND SUBGRADE ROUNDING IF APPLICABLE. (C) SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES. (D) SEE STANDARD DRAWING S-PL-6 FOR TYPICAL GUARDRAIL PLACEMENT. (E) SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. SEE THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011, FOR FURTHER REGARDING CLEAR ZONE. (F) 4 - 6 FEET MEDIAN WIDTH ALLOWED UNDER RESTRICTIVE CONDITIONS. 12 FEET MINIMUM MEDIAN WIDTH IS PREFERRED (SEE PAGE 7-14). (G) ALTHOUGH THE SELECTED DESIGN SPEED ESTABLISHES THE LIMITING VALUES OF CURVE RADIUS AND MINIMUM SIGHT DISTANC SHOULD BE USED IN DESIGN, THERE SHOULD BE NO RESTRICTION ON THE USE OF FLATTER HORIZONTAL CURVES OR GREATER DISTANCES WHERE SUCH IMPROVEMENTS CAN BE PROVIDED AS A PART OF AN ECONOMICAL DESIGN (SEE PAGE 2-55). (H) URBAN DESIGN SPEEDS ARE GENERALLY IN THE RANGE OF 30 TO 60 MILES PER HOUR (SEE PAGE 7-27).

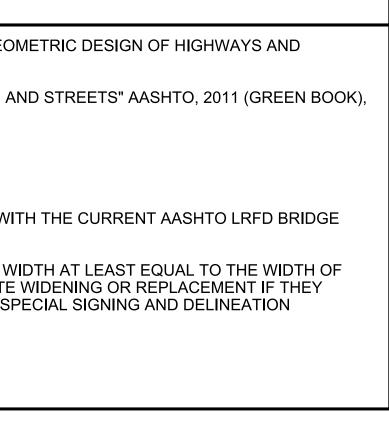
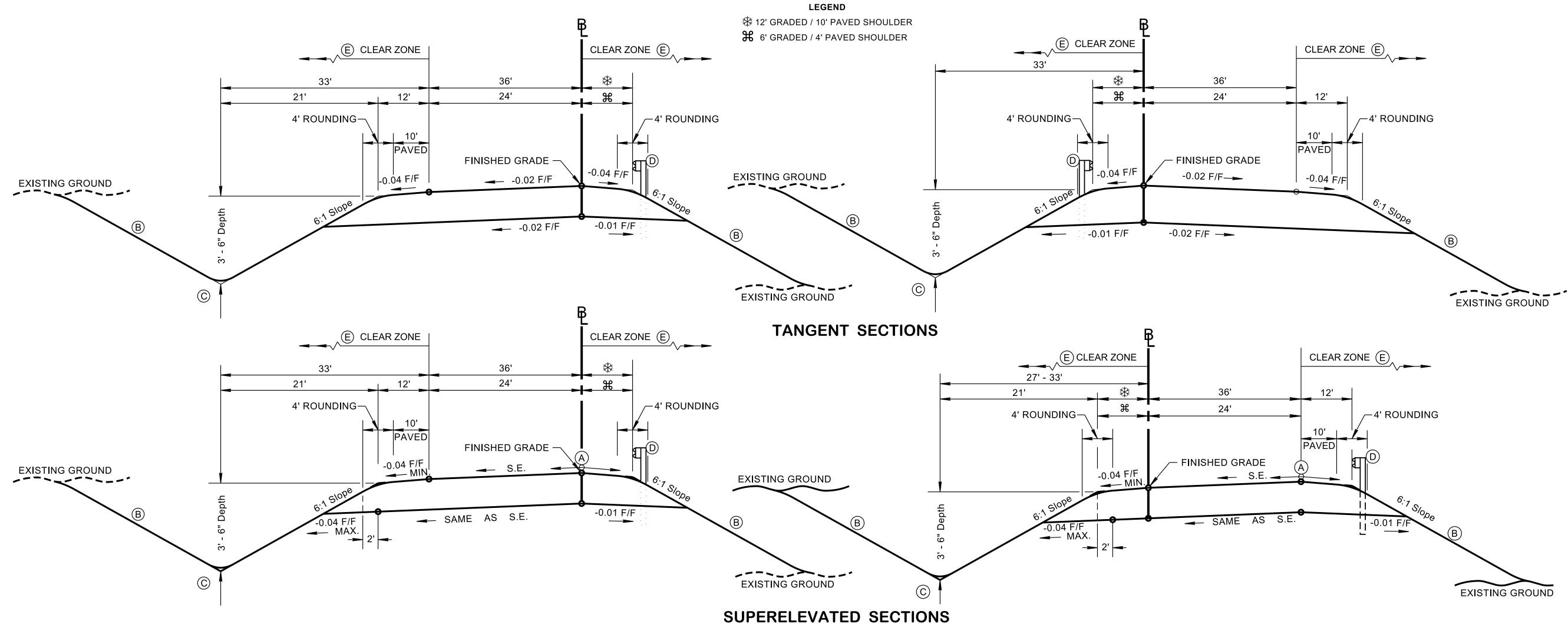

AND 6 LANE ARTERIAL - DESIGN STANDARDS (G) DESIGN SPEEDS (MPH) REMARKS 40 45 50 55 60 65 70 30 35 371 533 711 926 1190 1500 250 340 485 643 SEE PAGE 3-32 231 833 1060 1330 214 314 444 587 758 960 1200 | 1480 | 1810 5 5 4 4 3 3 3 5 SEE PAGE 7-4 6 4 6 5 4 4 | RAIN 6 5 8 7 7 6 5 8 7 7 6 5 5 6 SEE PAGE 7-29 9 8 8 7 7 6 6 RAIN 11 10 10 9 9 8 8 200 250 305 360 495 570 ET) 425 645 | 730 | SEE PAGE 7-3 URVE 19 29 44 61 84 114 151 193 | 247 | SEE PAGE 3-155 115 | 136 | 157 | 181 | SEE PAGE 3-161 RVE 49 64 79 96 37 PERELEVATION SEE STANDARD DRAWINGS RD11-SE SERIES

TABLE III	MEDIAN	WIDTH	S
MINIMUM MEDIAN WIDTH (FT)	URBAN/ RURAL	# LANES	SPEED (MPH)
	URBAN	4	35-55
36' MINIMUM	URBAN	6	35-55
48' MINIMUM	RURAL	4	40-70
66' MINIMUM	RURAL	6	40-70

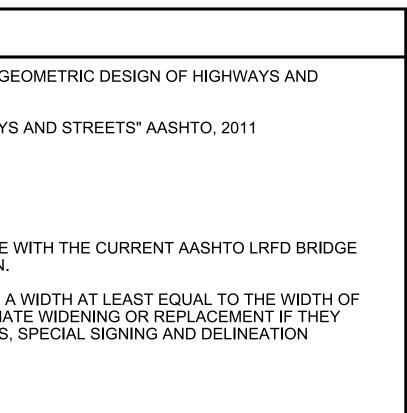

	GENERAL NOTES
	1 FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOI STREETS" AASHTO, 2011 (GREEN BOOK).
NG ON TOP OF CUT	2 PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS A UNLESS OTHERWISE NOTED.
	③ REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
ER INFORMATION	(4) DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS FIFTEEN FEET TO TWENTY FEET.
	5 THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNNELS AND OTHER STRUCTURES SHALL BE IN ACCORDANCE WITDESIGN SPECIFICATIONS, THE DESIGN LOADING SHOULD BE THE HL-93 CALIBRATED LIVE LOAD DESIGNATION.
NCE THAT ER SIGHT	6 FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HAVE ADEQUATE STRUCTURAL STRENGTH AND A W THE TRAVELED WAY PLUS 2 FEET CLEARANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE DO NOT PROVIDE AT LEAST HL-93 LIVE LOADING CAPACITY. AS AN INTERIM MEASURE, FOR NARROW BRIDGES, SP TREATMENTS MAY BE CONSIDERED.
	7 FOR ADDITIONAL URBAN DESIGN GUIDANCE AND CRITERIA, SEE PAGES 7-26 THROUGH 7-56.
	8 MINIMUM PASSING SIGHT DISTANCE IS NOT APPLICABLE FOR FOUR AND SIX LANE DIVIDED HIGHWAYS.

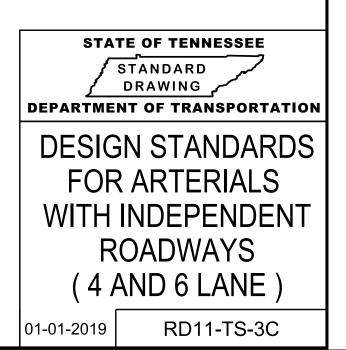
LEGEND

☆ THE FIRST 24' OF TRAFFIC LANES (FIRST & SECOND LANE AND ONE HALF OF THE MEDIAN ON EACH SIDE OF THE ROADWAY) THE CROSS-SLOPE IS -0.020 FT/FT AND THE TRAFFIC LANES FROM 24' TO 36' (THE THIRD LANE)

TABLE I DESIGN SPEEDS FOR RURAL ARTERIAL ROADS (SEE PAGE 7-2) G

TYPE OF TERRAIN	DESIGN SPEED (MPH)
LEVEL	60-70
ROLLING	50-60
MOUNTAINOUS	40-50


TABLE II4 AND 6 LANE ARTERIAL - DESIGN STANDARDSF												
DESI	IGN STANDARDS		DESIGN SPEEDS (MPH)									
(FOR GI\	/EN DESIGN SPEED)	30	35	40	45	50	55	60	65	70		
MINIMUM RADIL	JS (FEET) 0.04 MAX. S.E.	250	371	533	711	926	1190	1500				
MINIMUM RADIL	JS (FEET) 0.06 MAX. S.E.	231	340	485	643	833	1060	1330			SEE PAGE 3-32	
MINIMUM RADIU	JS (FEET) 0.08 MAX. S.E.	214	314	444	587	758	960	1200	1480	1810		
	LEVEL TERRAIN			5	5	4	4	3	3	3	SEE PAGE 7-4	
MAXIMUM RURAL GRADES %	ROLLING TERRAIN			6	6	5	5	4	4	4		
	MOUNTAINOUS TERRAIN		•••••••••••••••••••••••••••••••••••••••	8	7	7	6	6	5	5		
MAXIMUM URBAN	LEVEL TERRAIN	8	7	7	6	6	5	5			SEE PAGE 7-29	
GRADES %	ROLLING TERRAIN	9	8	8	7	7	6	6				
	MOUNTAINOUS TERRAIN	11	10	10	9	9	8	8				
MINIMUM STOPPING SIGHT DISTANCE (FEET)		200	250	305	360	425	495	570	645	730	SEE PAGE 7-3	
MINIMUM "K" VALUE	CREST VERTICAL CURVE	19	29	44	61	84	114	151	193	247	SEE PAGE 3-155	
	SAG VERTICAL CURVE	37	49	64	79	96	115	136	157	181	SEE PAGE 3-161	
FOR SUPERELEVATION SEE STANDARD DRAWINGS RD11-SE SERIES												


ca		DESIGN NOTES
Typi	A	THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHOULD NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7%.
RD11	B	SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE TABLES, ROUNDING ON TOP OF CUT SLOPES, TOE OF FILL SLOPES ROCK TREATMENT.
0\3 F	C	SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES.
sktop	D	SEE STANDARD DRAWING S-PL-6 AND S-PL-6A FOR TYPICAL GUARDRAIL PLACEMENT.
7/De	E	SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. SEE THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011, FOR FURTHER REGARDING CLEAR ZONE.
y 9 9 14	F	ALTHOUGH THE SELECTED DESIGN SPEED ESTABLISHES THE LIMITING VALUES OF CURVE RADIUS AND MINIMUM SIGHT DISTANCE SHOULD BE USED IN DESIGN, THERE SHOULD BE NO RESTRICTION ON THE USE OF FLATTER HORIZONTAL CURVES OR GREATER S DISTANCES WHERE SUCH IMPROVEMENTS CAN BE PROVIDED AS A PART OF AN ECONOMICAL DESIGN (SEE PAGE 2-55).
- 5	\bigcirc	

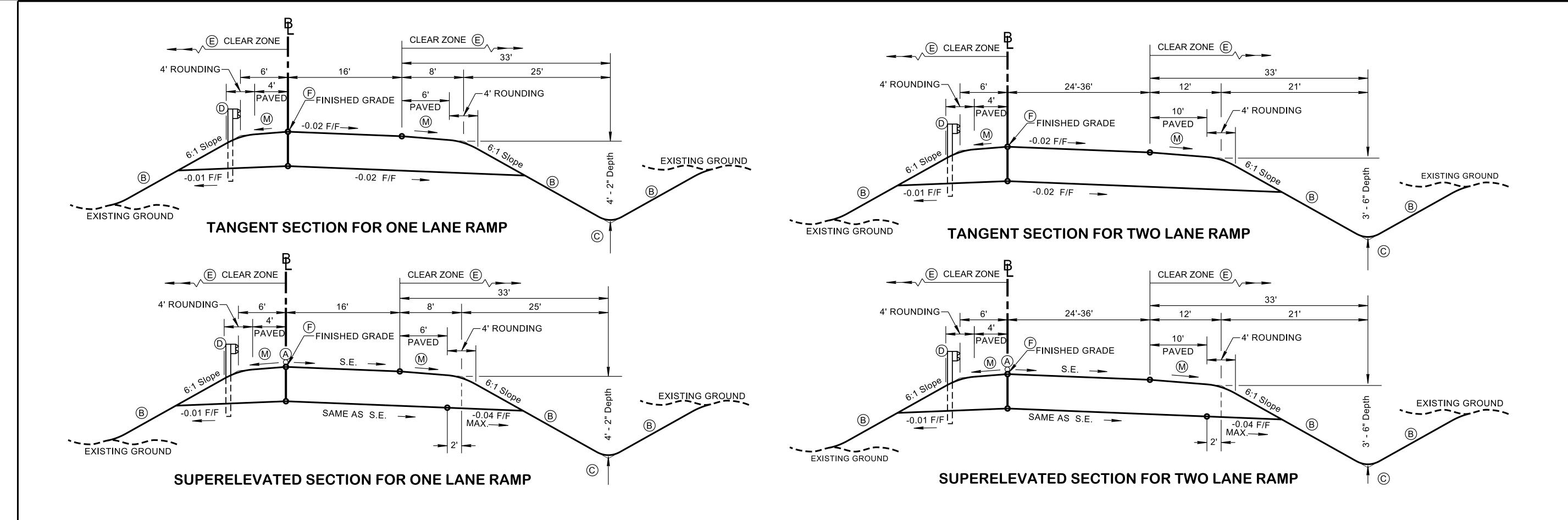

URBAN DESIGN SPEEDS ARE GENERALLY IN THE RANGE OF 30 TO 60 MILES PER HOUR (SEE PAGE 7-27). (G)

TABLE II	E III MEDIAN WIDTHS					
MINIMUM MEDIAN WIDTH (FT)	URBAN/ RURAL	# LANES	SPEED (MPH)			
36' MINIMUM	URBAN	4	35-55			
	URBAN	6	35-55			
48' MINIMUM	RURAL	4	40-70			
66' MINIMUM	RURAL	6	40-70			

	1 [GENERAL NOTES
	Ć	FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEO STREETS" AASHTO, 2011 (GREEN BOOK).
PES AND SPECIAL		PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS (GREEN BOOK), UNLESS OTHERWISE NOTED.
		REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
		DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS FIFTEEN FEET TO TWENTY FEET.
IER INFORMATION		THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNNELS AND OTHER STRUCTURES SHALL BE IN ACCORDANCE W DESIGN SPECIFICATIONS, THE DESIGN LOADING SHOULD BE THE HL-93 CALIBRATED LIVE LOAD DESIGNATION.
NCE THAT ER SIGHT	(6	FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HAVE ADEQUATE STRUCTURAL STRENGTH AND A THE TRAVELED WAY PLUS 2 FEET CLEARANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMAT DO NOT PROVIDE AT LEAST HL-93 LIVE LOADING CAPACITY. AS AN INTERIM MEASURE, FOR NARROW BRIDGES, STREATMENTS MAY BE CONSIDERED.
		FOR ADDITIONAL URBAN DESIGN GUIDANCE AND CRITERIA, SEE PAGES 7-26 THROUGH 7-56.
	(8	MINIMUM PASSING SIGHT DISTANCE IS NOT APPLICABLE FOR FOUR AND SIX LANE DIVIDED HIGHWAYS.

TABLE I GUIDE VALUES FOR RAMP DESIGN SPEED AS RELATED TO HIGHWAY DESIGN SPEED (SEE PAGE 10-89)

H HIGHWAY DESIGN G SPEEDS (MPH)	30	35	40	45	50	55	60	65	70	REMARKS
RAMP DESIGN SPEED (MPH) J										
UPPER RANGE (85%)	25	30	35	40	45	48	50	55	60	SEE PAGE 10-89
MIDDLE RANGE (70%)	20	25	30	33	35	40	45	45	50	
LOWER RANGE (50%)	15	18	20	23	25	28	30	30	35	

TABLE IISTOPPING SIGHT DISTANCE FOR RAMPS (SEE PAGE 3-4)					TABLE III LE	NGTH C(OMPC	UND	CUR	VE RA		ENT									
DESIGN SPEEDS (MPH)	15	20	25	30	35	40	45	50	55	60	65	70				(SI		GE 3	-58)	(K)	
MINIMUM, FEET	80	115	155	200	250	305	360	425	495	570	645	730		RADIUS (FEET)	100	150	200	250	300	400	500 OR MORE
													MINIMUM LENGTH OF HORIZONTAL CURVE								
														ACCEPTABLE, FEET	40	50	60	80	100	120	140
														DESIRABLE, FEET	60	70	90	120	140	180	200

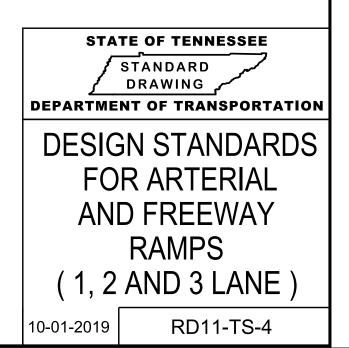
DESIGN NOTES

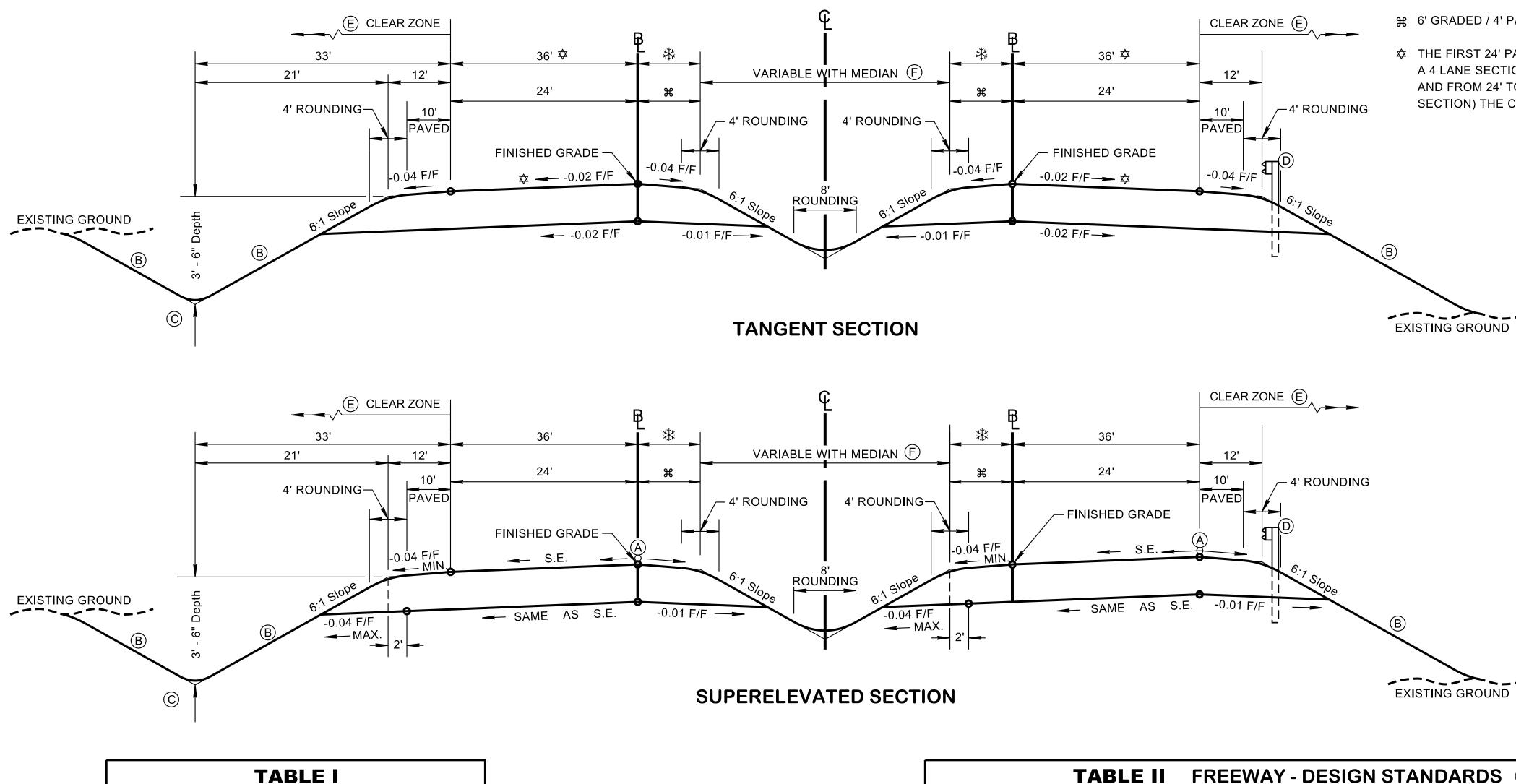
THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHOULD NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7%. (A) (B) SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE TABLES. ROUNDING ON TOP OF CUT SLOPES AND TOE ROUNDING ON TOP OF CUT SLOPES AND TOE OF FILL SLOPES SPECIAL ROCK TREATMENT AND SUBGRADE ROUNDING IF APPLICABLE. (\mathbf{C}) SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES. (D) SEE STANDARD DRAWING S-PL-6 FOR TYPICAL GUARDRAIL PLACEMENT. (E) SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. SEE THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011, FOR FURTHER INFORMATION REGARDING CLEAR ZONE. (F) WHEN THE RAMP PAVEMENT IS ADJACENT TO MAINLINE ROADWAY PAVEMENT, THE PROFILE GRADE WILL BE LOCATED ALONG THE MAINLINE EDGE OF PAVEMENT. (G) DOES NOT PERTAIN TO THE RAMP TERMINALS WHICH SHOULD BE PROPERLY TRANSITIONED AND PROVIDED WITH SPEED CHANGE FACILITIES ADEQUATE FOR THE HIGHWAY SPEED INVOLVED. (H)THE HIGHER HIGHWAY DESIGN SPEED SHOULD BE THE CONTROL. (I)THE SIGHT DISTANCE ON A FREEWAY PRECEDING THE APPROACH NOSE OF AN EXIT RAMP SHOULD EXCEED THE MINIMUM FOR THE THROUGH TRAFFIC DESIGN SPEED DESIRABLY BY 25 PERCENT OR MORE. SEMI-DIRECT CONNECT AND DIRECT CONNECT AND 2-LANE RAMPS, USE MIDDLE RANGE AS MINIMUM. UPPER RANGE IS PREFERRED. LOWER RANGE MAY BE USED FOR RAMPS NOT CONNECTING TO FREEWAYS (\mathbf{J}) OR EXPRESSWAYS. LOOP DESIGN SPEED SHALL NOT BE LESS THAN 25 MILES PER HOUR. (K) FOR RAMPS WITH COMPOUND CURVES, THE PREFERRED RATIO OF THE FLATTER RADIUS TO THE SHARPER RADIUS IS NOT TO EXCEED 1.75:1; HOWEVER, A 2:1 MINIMUM RATIO MAY BE USED (SEE PAGE 3-58). (L)MAY BE 2% GREATER IN SPECIAL CASES OR WHERE TOPOGRAPHY LIMITS CONDITIONS. DOWN GRADES SHOULD DESIRABLY BE LIMITED TO 3 OR 4 PERCENT ON RAMPS WITH SHARP HORIZONTAL CURVATURE AND SIGNIFICANT HEAVY TRUCK OR BUS TRAFFIC.

LLP

(M)

TABLE IV RECOMMENDED MAXIMUM DESIGN GRADES ON RAMPS (SEE PAGE 10-93)							
DESIGN SPEED (MPH)	UPGRADE OR DOWNGRADE L						
15-25	6-8%						
25-30	5-7%						
40	4-6%						
45 OR GREATER	3-5%						


GENERAL NOTES


- (1) 2011 (GREEN BOOK).
- (2) AASHTO, 2011.
- (3) SECTIONS DRAWN LOOKING IN DIRECTION OF TRAVEL.

FOR CONCRETE RAMPS USE CONSTANT CROSS SLOPE FOR LANES AND SHOULDERS, FOR ASPHALT RAMPS USE .04 F/F FOR TANGENT SHOULDERS AND A CROSS SLOPE FOR SHOULDERS ON THE HIGH SIDE OF SUPERELEVATION SUCH THAT THE ALGEBRAIC DIFFERENCE BETWEEN CROSS SLOPE DOES NOT EXCEED 7%, THE CROSS SLOPE ON THE LOW SIDE SHALL BE THE MINIMUM OF 4% OR THE SUPERELEVATION RATE.

PAGE NUMBERS REFERRED TO ON THIS DRAWING, UNLESS OTHERWISE NOTED AND FOR SPECIFIC CONDITIONS NOT COVERED ON THIS DRAWING, REFEREE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO,

REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE,"

DESIG	TABLE IDESIGN SPEEDS FORFREEWAYS (SEE PAGES 8-1 & 8-2)						
LOCATION	MINIMUM DESIGN SPEED (MPH)						
URBAN	50-60						
RURAL	70						
MOUNTAINOUS	50-60						

DESIGN NOTES

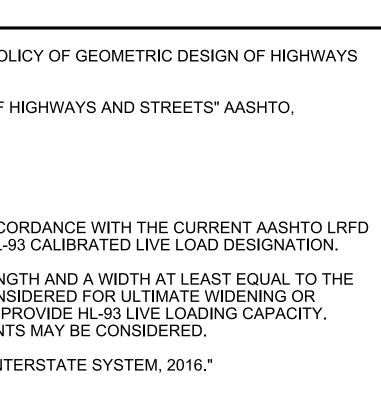
THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHOULD NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7%. (A) (B) SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE TABLES. ROUNDING ON TOP OF CUT SLOPES AND TOE ROUNDING ON TOP OF CUT SLOPES AND TOE OF FILL SLOPES SPECIAL ROCK TREATMENT AND SUBGRADE ROUNDING IF APPLICABLE. (C) SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES. (D) SEE STANDARD DRAWING S-PL-6 AND S-PL-6A FOR TYPICAL GUARDRAIL PLACEMENT. (E) SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. SEE THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011, FOR FURTHER INFORMATION REGARDING CLEAR ZONE. (F) MINIMUM MEDIAN WIDTH IS TO BE 48 FEET WITH 52 FEET PREFERRED WHEN USING 6 FEET WIDE INSIDE SHOULDERS. MINIMUM MEDIAN WIDTH IS TO BE 64 FEET WITH 68 FEET PREFERRED WHEN USING 12 FOOT WIDE INSIDE SHOULDERS. GRADES ONE PERCENT STEEPER THAN THE VALUE SHOWN MAY BE USED FOR EXTREME CASES IN URBAN AREAS WITH RIGHT-OF-WAY CONSTRAINTS OR (G) WHERE NEEDED IN MOUNTAINOUS TERRAIN. (H) ALTHOUGH THE SELECTED DESIGN SPEED ESTABLISHES THE LIMITING VALUES OF CURVE RADIUS AND MINIMUM SIGHT DISTANCE THAT SHOULD BE USED IN DESIGN, THERE SHOULD BE NO RESTRICTION ON THE USE OF FLATTER HORIZONTAL CURVES OR GREATER SIGHT DISTANCES WHERE SUCH IMPROVEMENTS CAN BE PROVIDED AS A PART OF AN ECONOMICAL DESIGN (SEE PAGE 2-55).

NOT TO SCALE

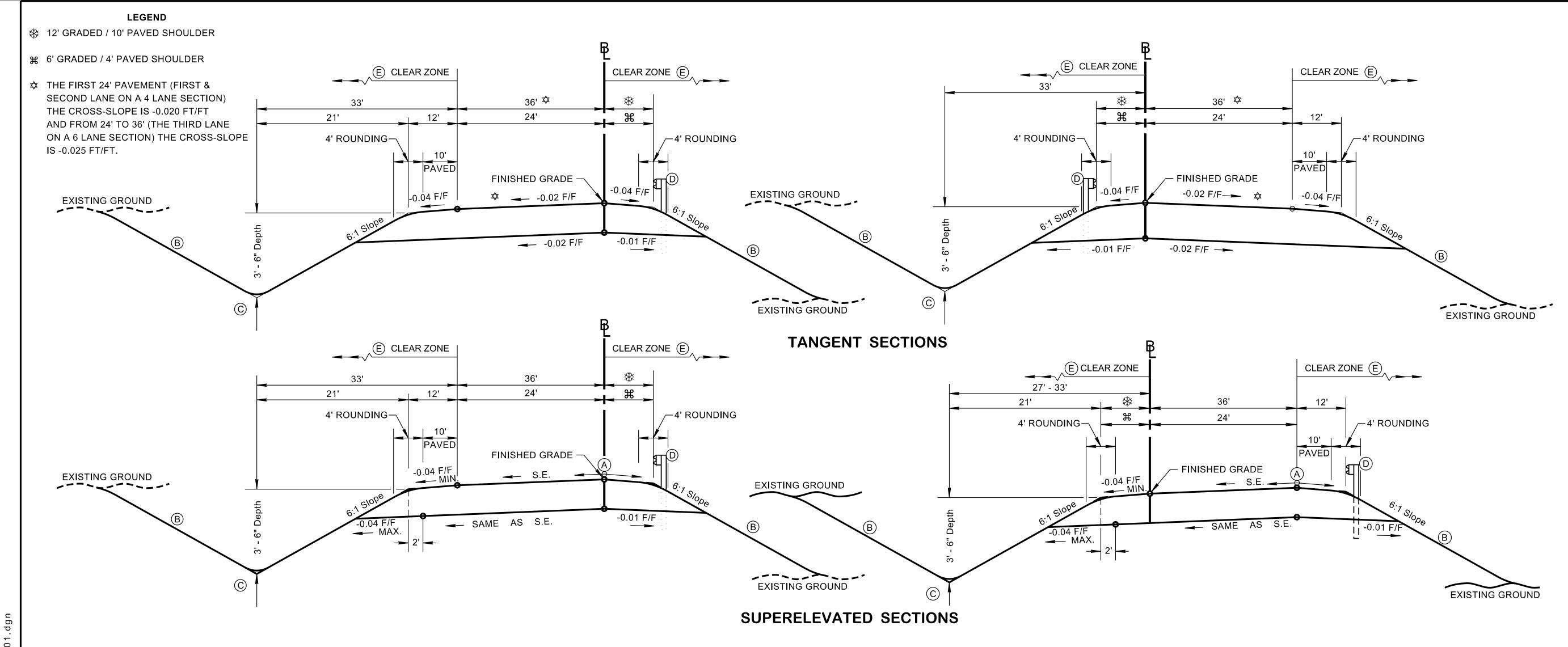
	TABLE II FREEWA	Y - DE	SIGN	STAN	DARD	S (H)		
DESIGN STANDARDS			DESIG	N SPEEI	DS (MPł	H)		
(FOR GIVEN DESIGN SPEED)		50	55	60	65	70		
MINIMUM RADIUS (FT.) 0.08 MAX. S.E.			960	1200	1480	1810	SEE PAGE 3-32	
MINIMUM STOPPING SIGHT DISTANCE (FT.)		425	495	570	645	730	SEE PAGE 3-4	
MINIMUM "K" VALUE	CREST VERTICAL CURVE	84	114	151	193	247	SEE PAGE 3-155	
	SAG VERTICAL CURVE	96	115	136	157	181	SEE PAGE 3-161	
	LEVEL TERRAIN	4	4	3	3	3		
MAXIMUM GRADES %	ROLLING TERRAIN	5	5	4	4	4	SEE PAGE 8-4	
G	MOUNTAINOUS TERRAIN	6	6	6	5	5		
	FOR SUPERELEVATION SEE STA	NDARD D	RAWINGS	RD11-SE	SERIES			

GENERAL NOTES

- (1)FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK).
- (2) PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO. 2011 (GREEN BOOK), UNLESS OTHERWISE NOTED.
- (3) REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
- (4) DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS TWENTY FEET.
- 5 THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNNELS AND OTHER STRUCTURES SHALL BE IN ACCORDANCE WITH THE CURRENT AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. STRUCTURES CARRYING FREEWAY TRAFFIC SHOULD BE THE HL-93 CALIBRATED LIVE LOAD DESIGNATION.
- 6 FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HAVE ADEQUATE STRUCTURAL STRENGTH AND A WIDTH AT LEAST EQUAL TO THE WIDTH OF THE TRAVELED WAY PLUS 2 FEET CLEARANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE WIDENING OR REPLACEMENT IF THEY DO NOT PROVIDE AT LEAST 3 FEET CLEARANCE ON EACH SIDE OR DO NOT PROVIDE HL-93 LIVE LOADING CAPACITY. AS AN INTERIM MEASURE, FOR NARROW BRIDGES, SPECIAL SIGNING AND DELINEATION TREATMENTS MAY BE CONSIDERED.
- (7)FOR INTERSTATES, SEE THE CURRENT EDITION OF AASHTO'S "A POLICY ON DESIGN STANDARDS-INTERSTATE SYSTEM, 2016."


LEGEND

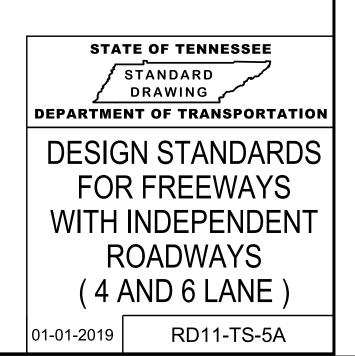
☆ 12' GRADED / 10' PAVED SHOULDER


₩ 6' GRADED / 4' PAVED SHOULDER

☆ THE FIRST 24' PAVEMENT (FIRST & SECOND LANE ON A 4 LANE SECTION) THE CROSS-SLOPE IS -0.020 FT/FT AND FROM 24' TO 36' (THE THIRD LANE ON A 6 LANE SECTION) THE CROSS-SLOPE IS -0.025 FT/FT.

DESIG	TABLE IDESIGN SPEEDS FORFREEWAYS (SEE PAGES 8-1 & 8-2)							
LOCATION	MINIMUM DESIGN SPEED (MPH)							
URBAN	50-60							
RURAL	70							
MOUNTAINOUS	50-60							

DESIGN NOTES


- (A) THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHOULD NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7%.
- SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE TABLES. ROUNDING ON TOP OF CUT SLOPES AND TOE ROUNDING ON TOP OF CUT **(B)** SLOPES AND TOE OF FILL SLOPES SPECIAL ROCK TREATMENT AND SUBGRADE ROUNDING IF APPLICABLE.
- © SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES.
- (D)SEE STANDARD DRAWING S-PL-6 FOR TYPICAL GUARDRAIL PLACEMENT.
- (E) SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. SEE THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011, FOR FURTHER INFORMATION REGARDING CLEAR ZONE.
- GRADES ONE PERCENT STEEPER THAN THE VALUE SHOWN MAY BE USED FOR EXTREME CASES IN URBAN AREAS WITH RIGHT-OF-WAY CONSTRAINTS (F) OR WHERE NEEDED IN MOUNTAINOUS TERRAIN.
- G ALTHOUGH THE SELECTED DESIGN SPEED ESTABLISHES THE LIMITING VALUES OF CURVE RADIUS AND MINIMUM SIGHT DISTANCE THAT SHOULD BE USED IN DESIGN, THERE SHOULD BE NO RESTRICTION ON THE USE OF FLATTER HORIZONTAL CURVES OR GREATER SIGHT DISTANCES WHERE SUCH IMPROVEMENTS CAN BE PROVIDED AS A PART OF AN ECONOMICAL DESIGN (SEE PAGE 2-55).

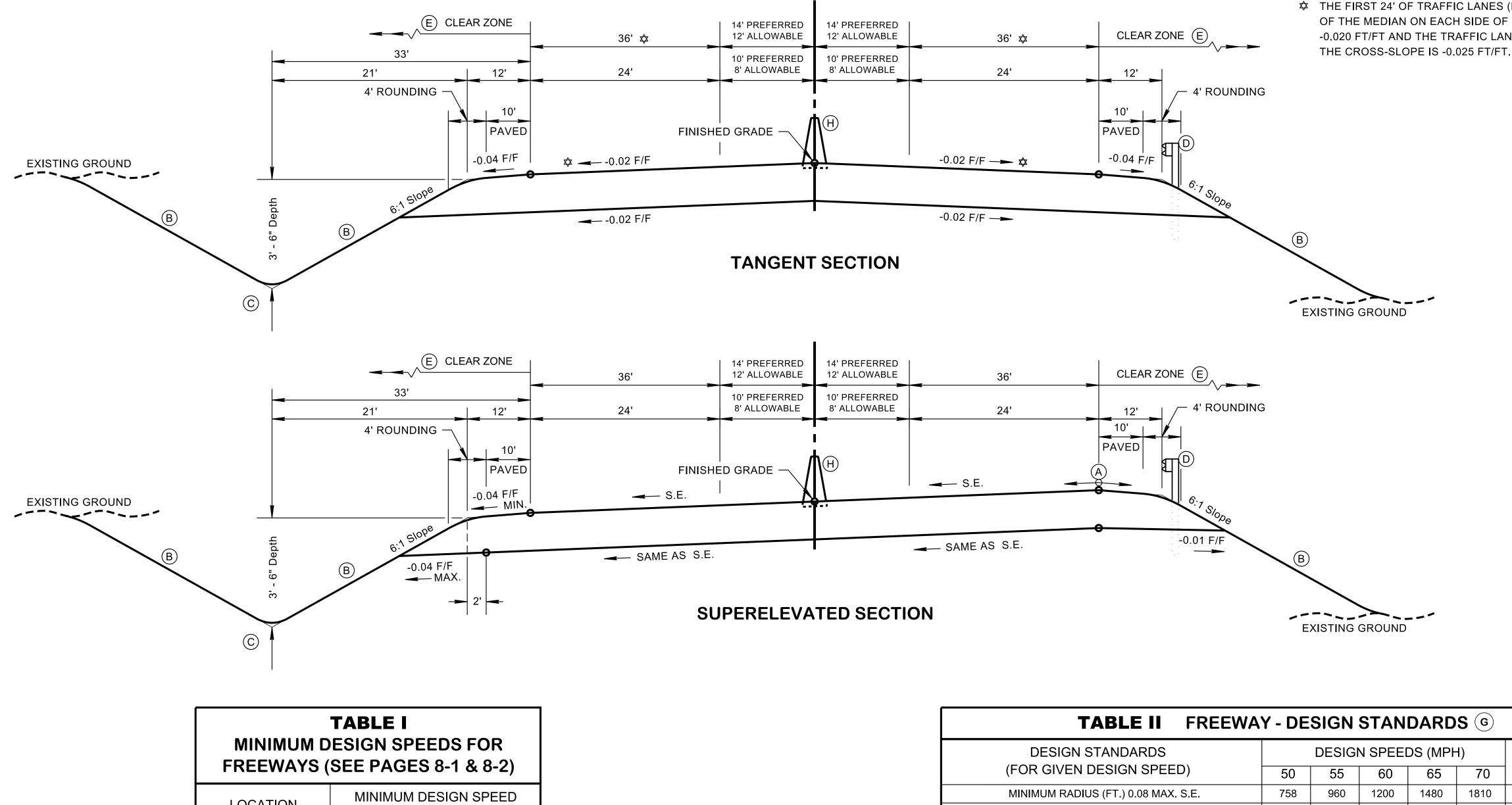

LLP

	TABLE II FREEWA	Y - DE	SIGN	STAN	DARD	S (G)		
DESIGN STANDARDS			DESIGN	I SPEED	S (MPH)		
(FOR GIVEN DESIGN SPEED)		50	55	60	65	70	REMARKS	
MINIMUM RADIUS (FT.) 0.08 MAX. S.E.			960	1200	1480	1810	SEE PAGE 3-32	
MINIMUM STOPPING SIGHT DISTANCE (FT.)		425	495	570	645	730	SEE PAGE 3-4	
MINIMUM "K" VALUE	CREST VERTICAL CURVE	84	114	151	193	247	SEE PAGE 3-155	
	SAG VERTICAL CURVE	96	115	136	157	181	SEE PAGE 3-161	
	LEVEL TERRAIN	4	4	3	3	3		
MAXIMUM GRADES %	ROLLING TERRAIN	5	5	4	4	4	SEE PAGE 8-4	
(F)	MOUNTAINOUS TERRAIN	6	6	6	5	5]	
	FOR SUPERELEVATION SEE STA	NDARD DI	RAWINGS	RD11-SE	SERIES	•		

	GENERAL NOTES
1	FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK).
2	PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK), UNLESS OTHERWISE NOTED.
3	REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
4	DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS TWENTY FEET.
5	THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNNELS AND OTHER STRUCTURES SHALL BE IN ACCORDANCE WITH THE CURRENT AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. STRUCTURES CARRYING FREEWAY TRAFFIC SHOULD BE HL-93 CALIBRATED LIVE LOAD DESIGNATION.
6	FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HAVE ADEQUATE STRUCTURAL STRENGTH AND A WIDTH AT LEAST EQUAL TO THE WIDTH OF THE TRAVELED WAY PLUS 2 FEET CLEARANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE WIDENING OR REPLACEMENT IF THEY DO NOT PROVIDE AT LEAST 3 FEET CLEARANCE ON EACH SIDE OR DO NOT PROVIDE HL-93 LIVE LOADING CAPACITY. AS AN INTERIM MEASURE, FOR NARROW BRIDGES, SPECIAL SIGNING AND DELINEATION TREATMENTS MAY BE CONSIDERED.

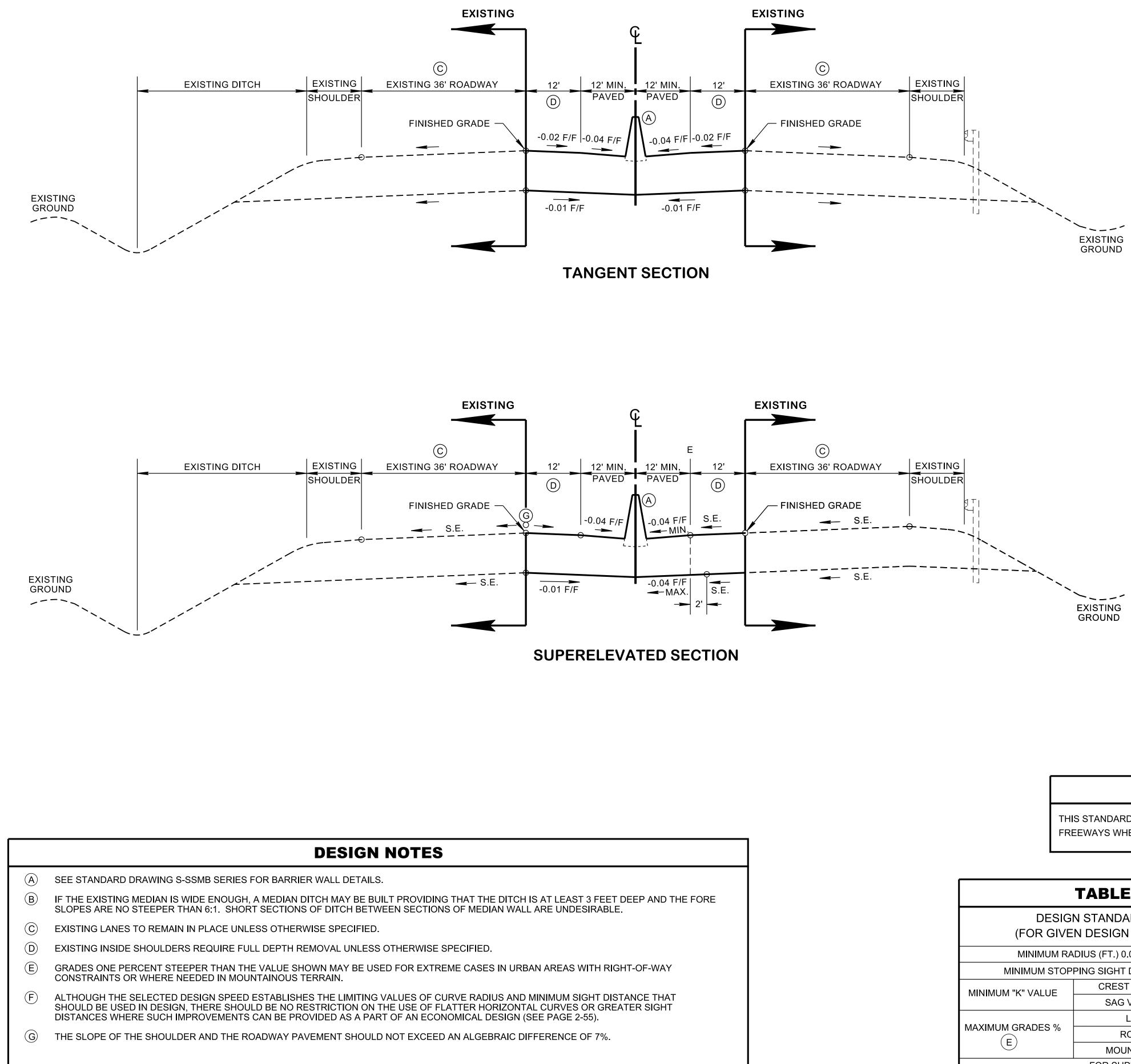
(7)FOR INTERSTATES, SEE THE CURRENT EDITION OF AASHTO'S "A POLICY ON DESIGN STANDARDS-INTERSTATE SYSTEM."

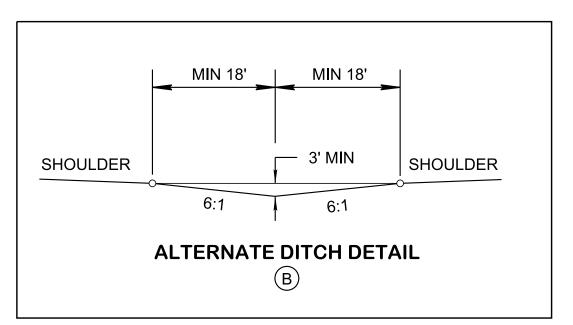
LOCATION	MINIMUM DESIGN SPEED (MPH)
URBAN	50-60
RURAL	70
MOUNTAINOUS	50-60

- (A)THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMENT SHOULD NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 7
- SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE TABLES. ROUNDING ON TOP OF CUT SLOPES AND TOE RO SLOPES AND TOE OF FILL SLOPES SPECIAL ROCK TREATMENT AND SUBGRADE ROUNDING IF APPLICABLE. (B)
- (C) SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES.
- (D) SEE STANDARD DRAWING S-PL-6 FOR TYPICAL GUARDRAIL PLACEMENT.
- (\mathbf{F}) SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. SEE THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011, FOR REGARDING CLEAR ZONE.
- (F) GRADES ONE PERCENT STEEPER THAN THE VALUE SHOWN MAY BE USED FOR EXTREME CASES IN URBAN AREAS WITH OR WHERE NEEDED IN MOUNTAINOUS TERRAIN.
- (G) ALTHOUGH THE SELECTED DESIGN SPEED ESTABLISHES THE LIMITING VALUES OF CURVE RADIUS AND MINIMUM SIGHT USED IN DESIGN, THERE SHOULD BE NO RESTRICTION ON THE USE OF FLATTER HORIZONTAL CURVES OR GREATER SIG IMPROVEMENTS CAN BE PROVIDED AS A PART OF AN ECONOMICAL DESIGN (SEE PAGE 2-55).
- (\mathbf{H}) ALL MEDIAN BARRIER WALLS SHALL BE SINGLE SLOPE BARRIER WALL. FOR BARRIER WALL DETAILS SEE STANDARD DRA

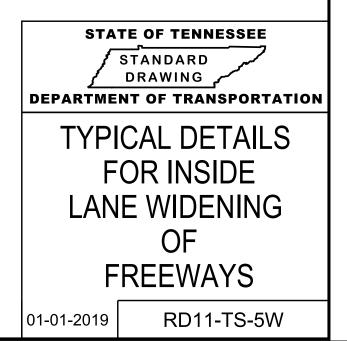
	TABLE II FREEWA	Y - DE	SIGN	STAN	DARD	S (G)		
DESIGN STANDARDS			DESIG	N SPEEI	DS (MPH	H)	REMARKS	
(FOR GIVEN DESIGN SPEED)		50	55	60	65	70		
MINIMUM RADIUS (FT.) 0.08 MAX. S.E.			960	1200	1480	1810	SEE PAGE 3-32	
MINIMUM STOPPING SIGHT DISTANCE (FT.)		425	495	570	645	730	SEE PAGE 3-4	
MINIMUM "K" VALUE	CREST VERTICAL CURVE	84	114	151	193	247	SEE PAGE 3-155	
	SAG VERTICAL CURVE	96	115	136	157	181	SEE PAGE 3-161	
	LEVEL TERRAIN	4	4	3	3	3		
MAXIMUM GRADES %	ROLLING TERRAIN	5	5	4	4	4	SEE PAGE 8-4	
(F)	MOUNTAINOUS TERRAIN	6	6	6	5	5		
	FOR SUPERELEVATION SEE STA	NDARD D	RAWINGS	RD11-SE	SERIES		•	

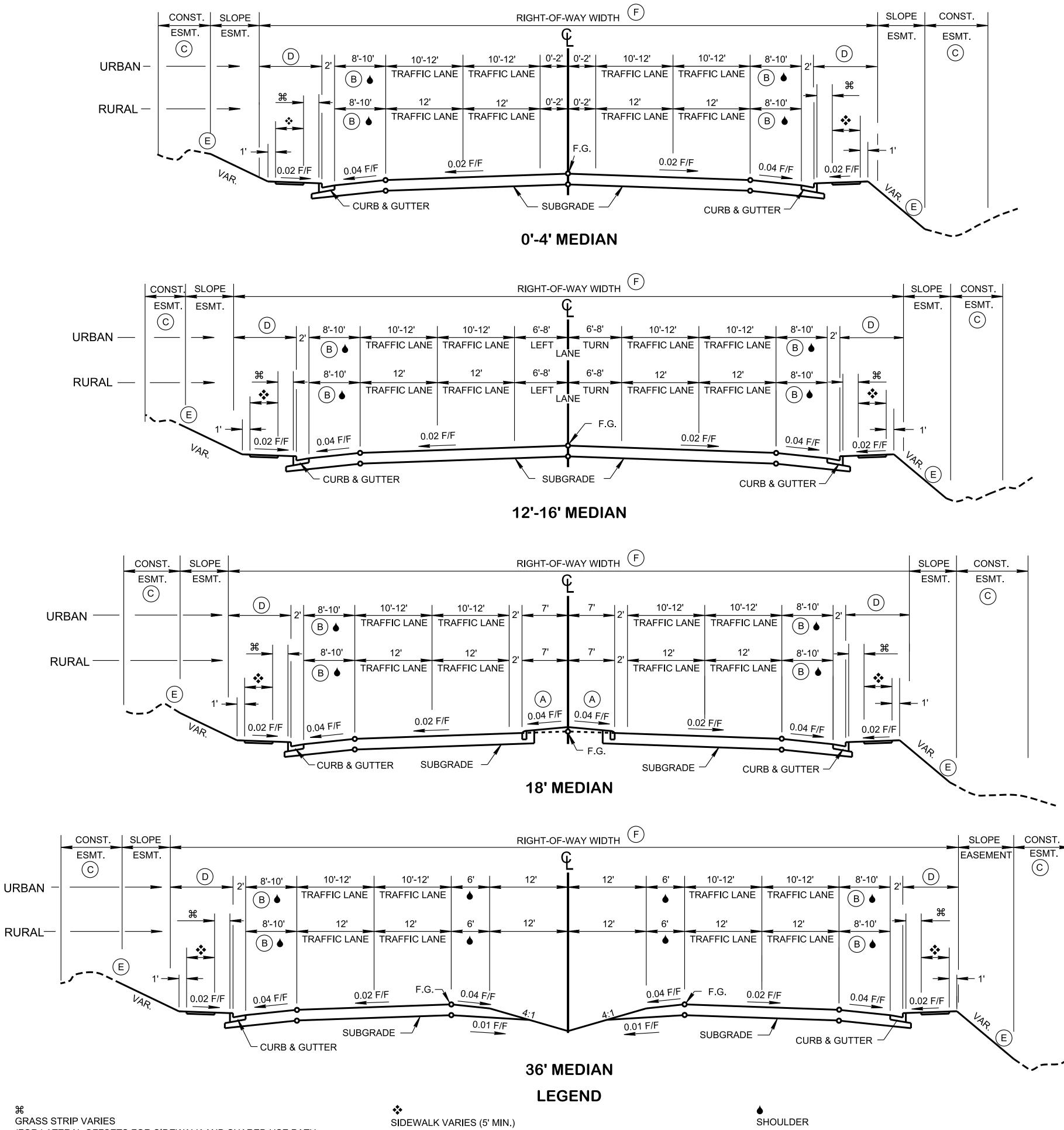
%.	1	FOR SPECIFIC CONDITIONS NOT COVERED ON THIS AND STREETS" AASHTO, 2011 (GREEN BOOK).
OUNDING ON TOP OF CUT	2	PAGE NUMBERS REFERRED TO ON THIS DRAWING A (GREEN BOOK), UNLESS OTHERWISE NOTED.
	3	REFERENCE SHOULD ALSO BE MADE TO THE AASH
	4	DESIRABLE RIGHT-OF-WAY IS SLOPE LINES PLUS FI
FURTHER INFORMATION	5	THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNN BRIDGE DESIGN SPECIFICATIONS. STRUCTURES C/
RIGHT-OF-WAY CONSTRAINTS	6	FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY WIDTH OF THE TRAVELED WAY PLUS 2 FEET CLEAR
DISTANCE THAT SHOULD BE GHT DISTANCES WHERE SUCH		REPLACEMENT IF THEY DO NOT PROVIDE AT LEAST AS AN INTERIM MEASURE, FOR NARROW BRIDGES,
	(7)	FOR INTERSTATES, SEE THE CURRENT EDITION OF
AWING S-SSMB SERIES.		

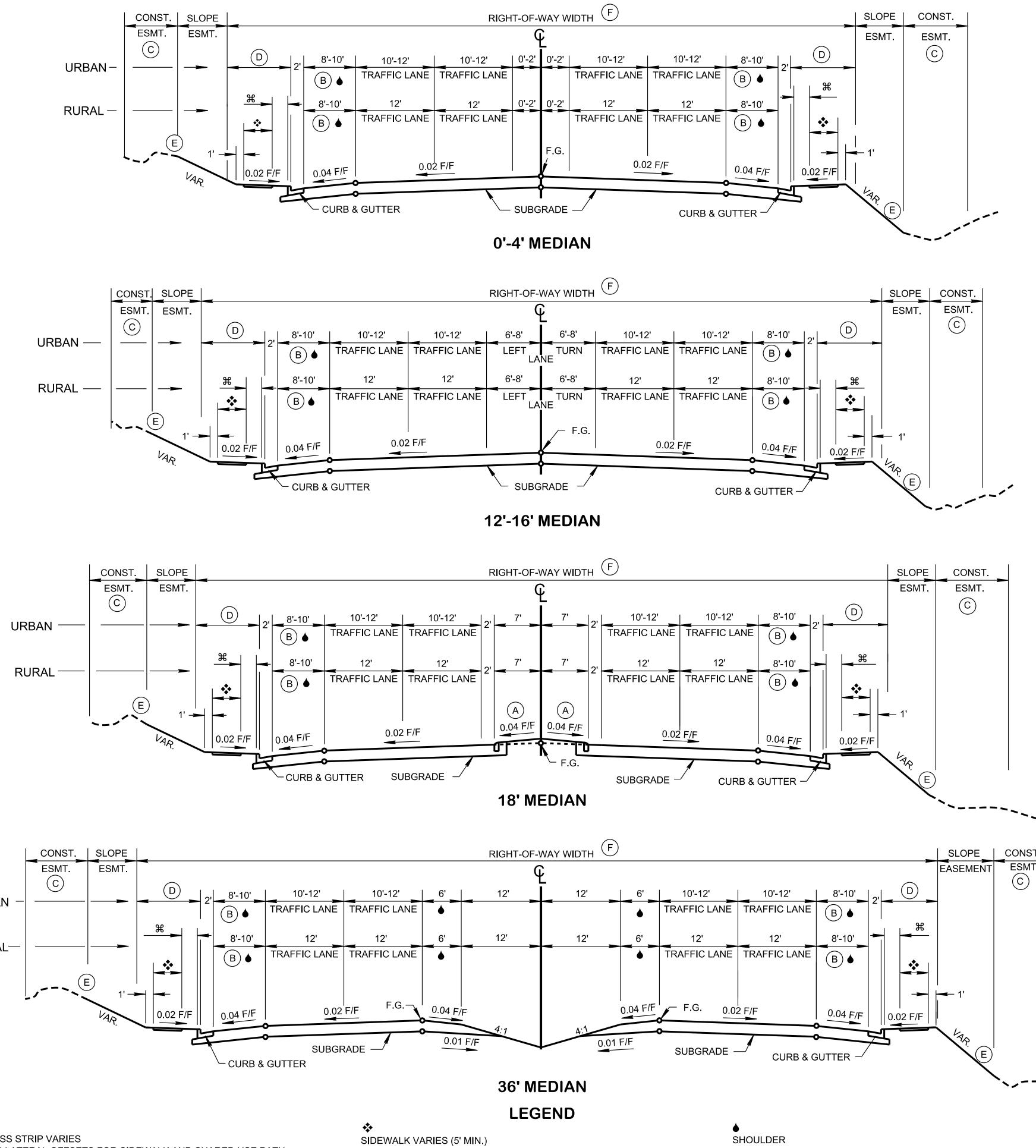

GENERAL NOTES

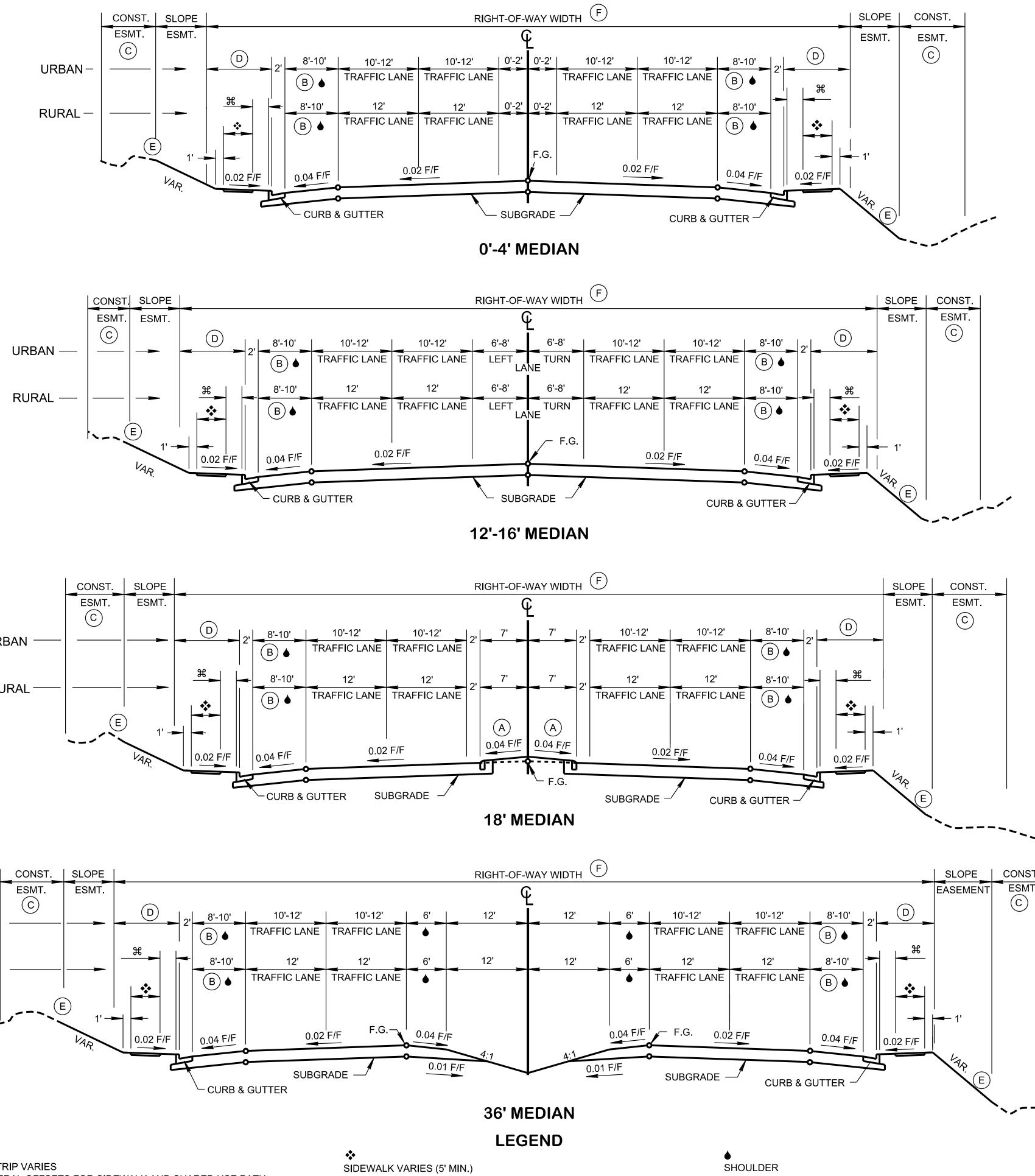

- SHEET, REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS
- ARE FROM "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011
- ITO "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
- IFTEEN FEET TO TWENTY FEET.
- NELS AND OTHER STRUCTURES SHALL BE IN ACCORDANCE WITH THE CURRENT AASHTO LRFD CARRYING FREEWAY TRAFFIC SHOULD BE HL-93 CALIBRATED LIVE LOAD DESIGNATION.
- Y SHOULD HAVE ADEQUATE STRUCTURAL STRENGTH AND A WIDTH AT LEAST EQUAL TO THE RANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE WIDENING OR 3 FEET CLEARANCE ON EACH SIDE OR DO NOT PROVIDE HL-93 LIVE LOADING CAPACITY. SPECIAL SIGNING AND DELINEATION TREATMENTS MAY BE CONSIDERED.
- AASHTO'S "A POLICY ON DESIGN STANDARDS-INTERSTATE SYSTEM," 2016.

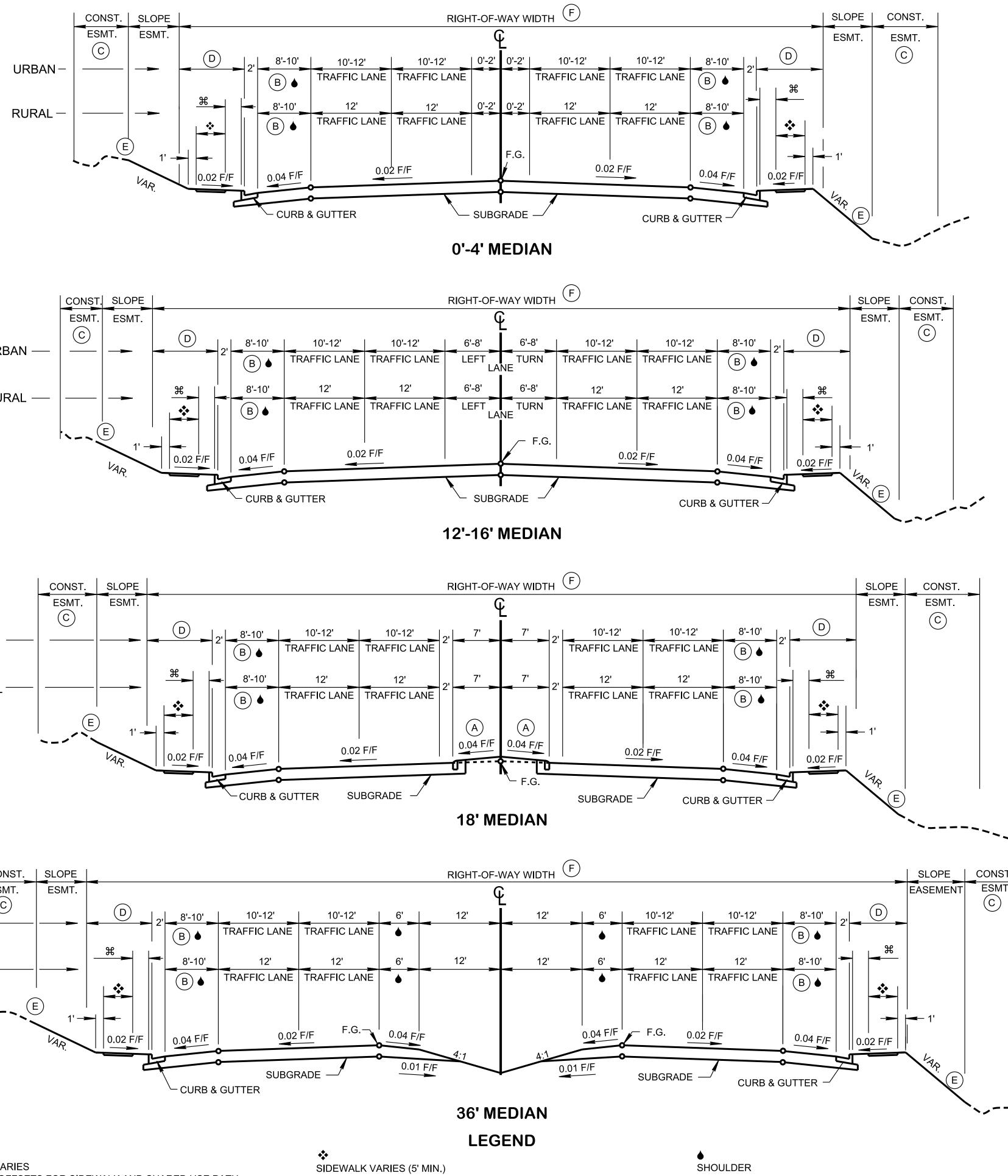
LEGEND


✿ THE FIRST 24' OF TRAFFIC LANES (FIRST & SECOND LANE AND ONE HALF OF THE MEDIAN ON EACH SIDE OF THE ROADWAY) THE CROSS-SLOPE IS -0.020 FT/FT AND THE TRAFFIC LANES FROM 24' TO 36' (THE THIRD LANE)


	PUF	RPOS	E				
	IIS STANDARD IS ONLY TO BE USED I REEWAYS WHERE THE NEW LANES TO						
	TABLE I FREEWAY	' - DES	IGN S	TANC	ARDS	F	
DESIGN STANDARDS			DESIG	H)			
(FOR GIVEN DESIGN SPEED)		50	55	60	65	70	-
MINIMUM RADIUS (FT.) 0.08 MAX. S.E.		758	960	1200	1480	1810	SEE PAGE 3-32
MINIMUM STOP	PPING SIGHT DISTANCE (FT.)	425	495	570	645	730	SEE PAGE 3-4
MINIMUM "K" VALUE	CREST VERTICAL CURVE	84	114	151	193	247	SEE PAGE 3-15
	SAG VERTICAL CURVE	96	115	136	157	181	SEE PAGE 3-16
	LEVEL TERRAIN	4	4	3	3	3	
MAXIMUM GRADES %	ROLLING TERRAIN	5	5	4	4	4	SEE PAGE 8-4
(E)	MOUNTAINOUS TERRAIN	6	6	6	5	5	
	FOR SUPERELEVATION SEE STA	NDARD D	RAWINGS	RD11-SE	SERIES		




NOT TO SCALE


LLP

•* SIDEWALK VARIES (5' MIN.) (FOR LATERAL OFFSETS FOR SIDEWALK AND SHARED USE PATH SEE STD. DWG. MM-TS-2) (FOR DETAILS FOR CONCRETE SIDEWALK SEE STD. DWG. MM-SW-1)

DESIGN NOTES NOT BE PERMITTED. INVESTMENTS REPORT.

(C)CONSTRUCTION EASEMENT - 10 FEET MINIMUM IS DESIRABLE.

(A)

 (\mathbf{B})

- \bigcirc SHALL EXTEND 1 FT. BEHIND SIDEWALK.
- (E)SLOPES - 3:1 SLOPES OR FLATTER ARE DESIRABLE AND ARE THE MAXIMUM IN REGION IV. 2:1 SLOPES ARE APPLICABLE IN AREAS WHERE RIGHT-OF-WAY RESTRICTIONS, ENVIRONMENTAL CONSIDERATIONS, OR COST WARRANTS A STEEPER THAN 3:1 SLOPE.
- (\mathbf{F}) SERVICE APPURTENANCE (LARGE SIGNS STRUCTURES, SIGNAL, LUMINARY AND PREFERABLE OUTSIDE THE SIDEWALK AREA AND INSIDE RIGHT-OF-WAY.

	GENERAL
1	THESE SECTIONS ARE GENERALLY FOR U DESIGN SPEEDS OF 45 MILES PER HOUR O SUBURBAN ROADWAYS WITH DESIGN SPE ENVIRONMENTAL OR OTHER FACTORS LIN
2	OUTSIDE CURBS - FOR DESIGN SPEEDS O SHOULD BE USED. FOR DESIGN SPEEDS 4 BE USED.
3	SUPERELEVATION AND MEDIAN BARRIERS AASHTO 2011 AND RD11-SE-SERIES STAN
4	SIDEWALKS - SEE STANDARD DRAWING RI NEXT TO THE CURB. SIDEWALK WIDTH SH ALL SIDEWALKS SHALL BE ADA COMPLIAN
5	ABOVE GROUND UTILITIES - ABOVE GROU THE SIDEWALK AND CLOSE TO THE BACK
6	GRASS STRIP - ABOVE GROUND UTILITIES STRIP. THE GRASS STRIP SHOULD BE 2 F
7	PARKING - REFERENCE SHOULD BE MADE OF HIGHWAYS AND STREETS" AASHTO, 20
8	BICYCLE AND PEDESTRIAN FACILITIES - REPOLICY OF GEOMETRIC DESIGN OF HIGHW (GREEN BOOK), (PAGE 5-15 LOCAL ROADS 6-16 URBAN COLLECTORS, PAGE 7-25 URB ARTERIALS) AND "GUIDE FOR THE DEVELC AASHTO 2012 AND "GUIDE FOR THE PLANN PEDESTRIAN FACILITIES", AASHTO 2017. S FOR DETAILS.
9	RURAL SECTIONS
	FOR DESIGN SPEED, ALIGNMENT, GRADE, TO THE FOLLOWING STANDARD DRAWING
	LOCAL ROADS - RD11-TS-1A COLLECTOR ROADS - RD11-TS-2, R ARTERIAL ROADS - RD11-TS-3, RD1
10	DESIGN SPEED - URBAN SECTIONS
	URBAN ROADS - DESIGN SPEEDS FOR URE 30-55 MPH WITH LOWER SPEEDS APPLYIN AND IN MORE DEVELOPED AREAS, WHILE TO OUTLYING SUBURBAN AND DEVELOPIN
	COLLECTOR ROADS - DESIGN SPEEDS OF CONSIDERATION GIVEN TO AVAILABLE RIG DEVELOPMENT, AND PEDESTRIAN PRESEN THRU 6-16 FOR ADDITIONAL INFORMATION
	LOCAL ROADS - DESIGN SPEED IS NOT A M DESIGN ELEMENTS DESIGN SPEEDS RANG
(11)	GENERAL DESIGN CONSIDERATIONS AND URBAN SECTIONS
	SEE "A POLICY OF GEOMETRIC DESIGN 2011 (GREEN BOOK).
	LOCAL ROADS - PAGES 5-11 THRU

LOCAL ROADS - PAGES 5-11 THRU 5-19 COLLECTORS ROADS - PAGES 6-11 THRU 6-16 ARTERIAL ROADS - PAGES 7-26 THRU 7-38

(12)SUBURBAN ROADWAYS - FOR DESIGN OF ARTERIAL AND COLLECTOR ROADWAYS

(FOR BIKE ACCOMMODATION DESIGN GUIDANCE SEE STD. DWG. MM-TS-1)

MEDIAN CURBS - MEDIAN CURBS WILL BE SLOPING CURBS. VERTICAL CURBS WILL

SHOULDER WIDTH - SHOULDER WIDTH WILL BE SPECIFIED IN THE TRANSPORTATION

RIGHT-OF-WAY WIDTH - 10 FT. MINIMUM WIDTH BEHIND FACE OF CURB. WHEN THE SIDEWALK IS LOCATED 9 FT OR MORE BEHIND THE FACE OF CURB, RIGHT-OF-WAY

UTILITY POLES) SHALL BE PLACED OUTSIDE THE PEDESTRIAN ACCESSIBLE SPACE,

NOTES

URBAN AND SUBURBAN ROADWAYS WITH OR LESS OR FOR RURAL AND PEEDS OF 55 MPH OR LESS WHERE IMIT THE RIGHT-OF-WAY AVAILABLE.

OF LESS THAN 45 MPH, A 6" VERTICAL CURB 3 45-55 MPH, 6 INCH SLOPING CURBS SHALL

RS - SEE "ROADSIDE DESIGN GUIDE", NDARD DRAWINGS.

RD11-TS-6B WHEN SIDEWALK IS LOCATED SHOULD BE A MINIMUM OF FIVE FEET WIDE. NT.

UND UTILITIES SHOULD BE LOCATED BEHIND OF RIGHT-OF-WAY.

S SHALL NOT BE PLACED IN THE GRASS FT. TO 5 FT. WIDE.

E TO "A POLICY OF GEOMETRIC DESIGN 2011 (GREEN BOOK), ARTERIALS- PAGE 7-34.

REFERENCE SHOULD BE MADE TO "A WAYS AND STREETS" AASHTO, 2011 S. PAGE 6-7 RURAL COLLECTORS. PAGE BAN ARTERIALS, AND PAGE 7-41 RURAL OPMENT OF BICYCLE FACILITIES" INING, DESIGN AND OPERATION OF SEE STANDARD DRAWING NO. MM-TS-1 & 2

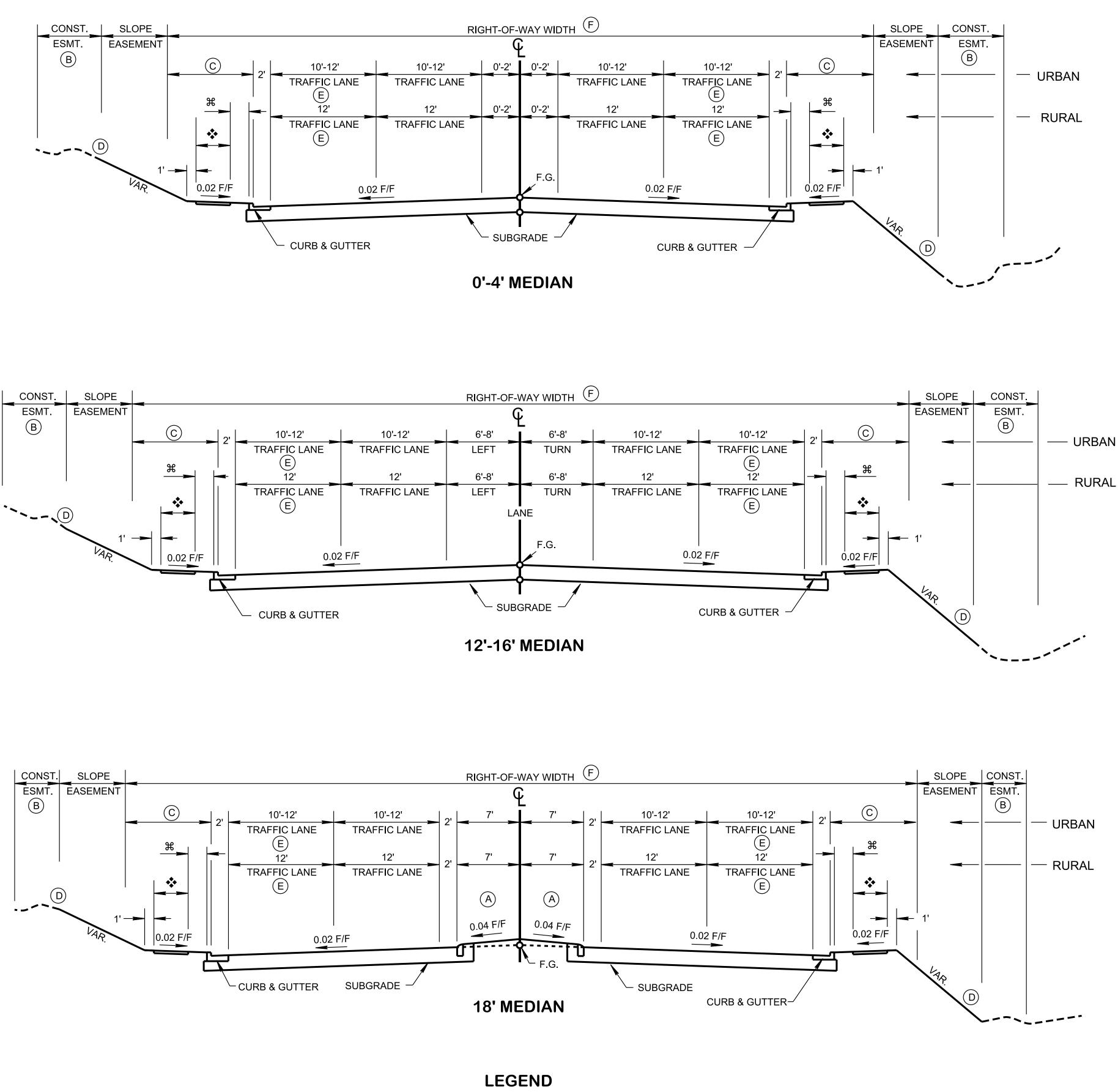
AND OTHER DESIGN STANDARDS REFER GS AS APPROPRIATE:

RD11-TS-2A, RD11-TS-2B 011-TS-3A, RD11-TS-3B, RD11-TS-3C

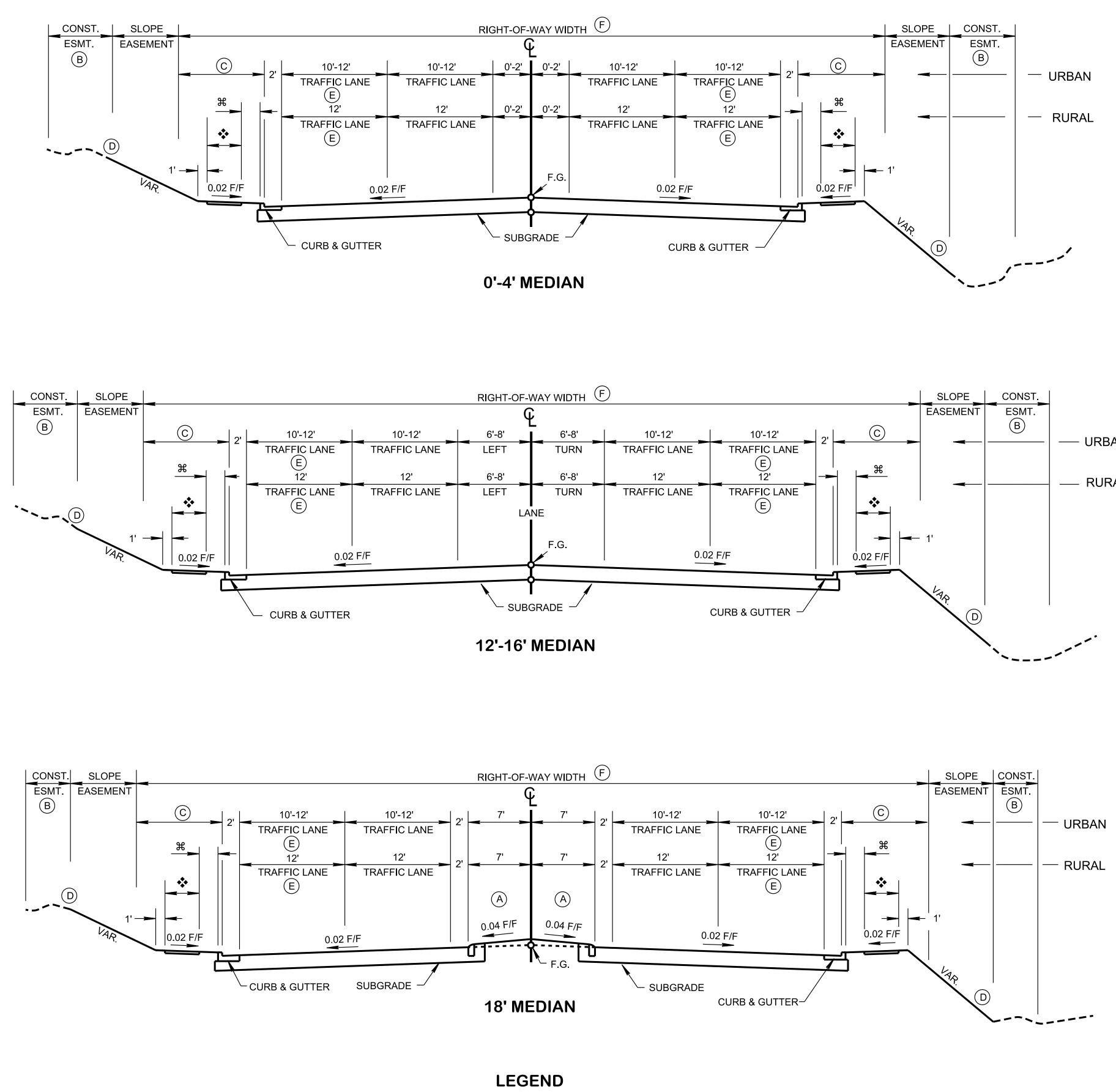
RBAN ARTERIALS GENERALLY RANGE FROM NG IN CENTRAL BUSINESS DISTRICTS HIGHER SPEEDS ARE MORE APPLICABLE NG AREAS.

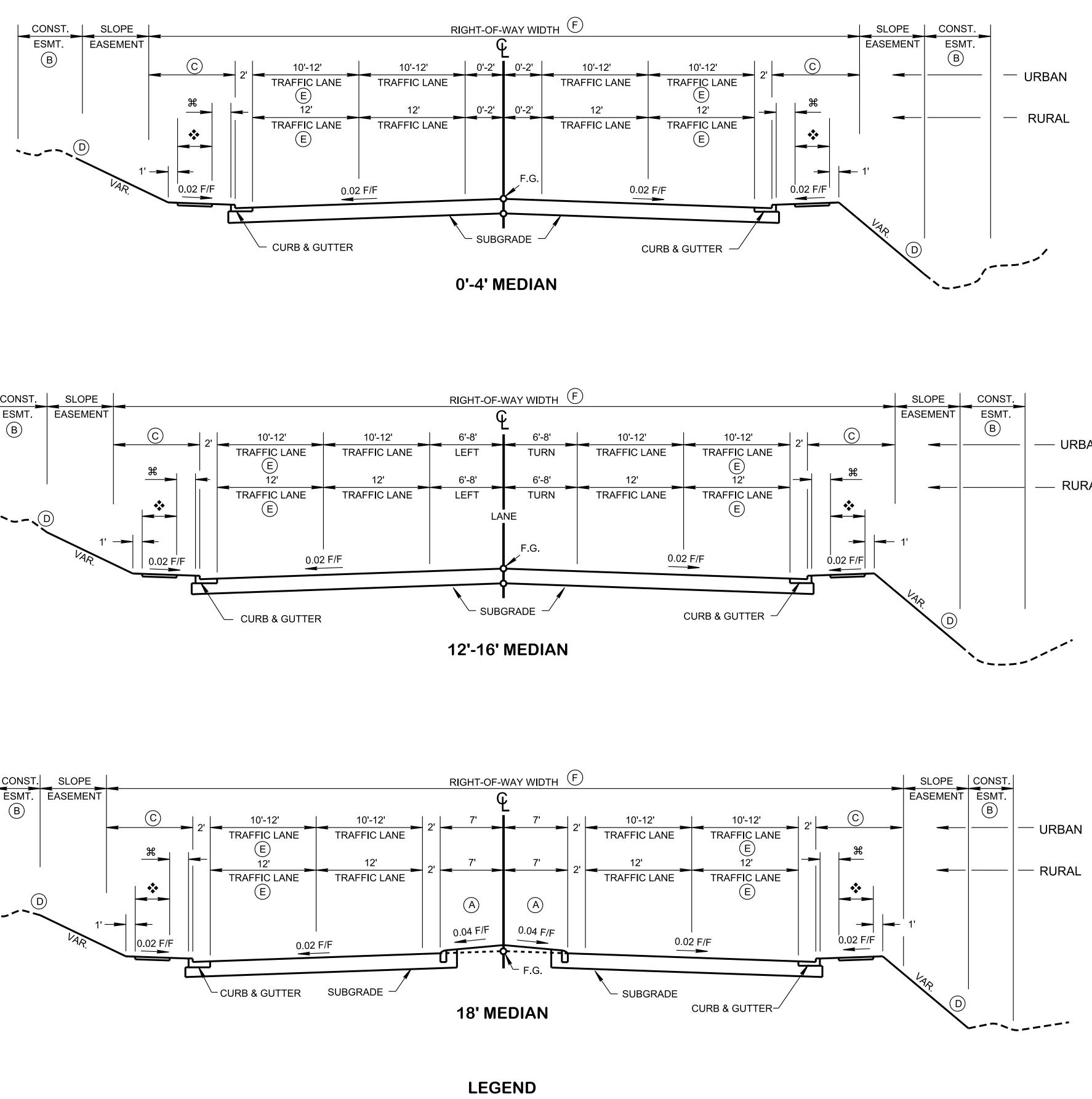

30 MPH OR HIGHER SHOULD BE USED WITH IGHT-OF-WAY, TERRAIN, ADJACENT ENCE. SEE PAGE 2-53 THRU 2-58 AND 6-11

MAJOR FACTOR, FOR CONSISTENCY IN IGING FROM 20-30 MPH MAY BE USED.


D CROSS-SECTIONAL ELEMENTS -

I OF HIGHWAYS AND STREETS" AASHTO,


DESIGNERS SHOULD FOLLOW GUIDANCE FOR URBAN SECTIONS. FOR LOCAL ROADS CONSIDERATION SHOULD BE GIVEN TO THE CONTEXT OF THE ROADWAY REGARDING WHETHER THE FACILITY SHOULD BE DESIGNED TO URBAN OR RURAL STANDARDS


••••

NOT TO SCALE

LLP

DESIGN NOTES

- (A)NOT BE PERMITTED.
- **(B)** CONSTRUCTION EASEMENT - 10 FEET MINIMUM IS DESIRABLE.
- \bigcirc SHALL EXTEND 1 FT. BEHIND SIDEWALK.
- (D)SLOPES - 3:1 SLOPES OR FLATTER ARE DESIRABLE AND ARE THE MAXIMUM IN REGION IV. 2:1 SLOPES ARE APPLICABLE IN AREAS WHERE RIGHT-OF-WAY RESTRICTIONS, ENVIRONMENTAL CONSIDERATIONS, OR COST WARRANTS A STEEPER THAN 3:1 SLOPE.
- (E) 14' LANE WIDTH SHOULD BE CONSIDERED FOR SHARED LANES. FOR BIKE ACCOMMODATION DESIGN GUIDANCE SEE STD. DWG. MM-TS-1.
- (F) PREFERABLE OUTSIDE THE SIDEWALK AREA AND INSIDE RIGHT-OF-WAY.

(2)

(7)

GENERAL NOTES THESE SECTIONS ARE FOR URBAN AND SUBURBAN ROADWAYS OR RURAL ROADWAYS WHERE ENVIRONMENTAL OR OTHER FACTORS LIMIT THE RIGHT-OF-WAY AVAILABLE WITH DESIGN SPEEDS OF 45 MILES PER HOUR OR LESS. OUTSIDE CURBS - FOR DESIGN SPEEDS OF LESS THAN 45 MPH, A 6" VERTICAL CURB SHOULD BE USED. FOR 45 MPH DESIGN. 6 INCH SLOPING CURBS SHALL BE USED. $(\mathbf{3})$ SUPERELEVATION AND MEDIAN BARRIERS - SEE "ROADSIDE DESIGN GUIDE", AASHTO 2011 AND RD11-SE-SERIES STANDARD DRAWINGS. (4)SIDEWALKS - SEE STANDARD DRAWING RD11-TS-6C WHEN SIDEWALK IS LOCATED NEXT TO THE CURB. SIDEWALK WIDTH SHOULD BE A MINIMUM OF FIVE FEET WIDE. ALL SIDEWALKS SHALL BE ADA COMPLIANT. (5) ABOVE GROUND UTILITIES - ABOVE GROUND UTILITIES SHOULD BE LOCATED BEHIND THE SIDEWALK AND CLOSE TO THE BACK OF RIGHT-OF-WAY. GRASS STRIP - ABOVE GROUND UTILITIES SHALL NOT BE PLACED IN THE GRASS STRIP. THE GRASS STRIP SHOULD BE 2 FT. TO 5 FT. WIDE. PARKING - REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK), ARTERIALS- PAGE 7-34. BICYCLE AND PEDESTRIAN FACILITIES - REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK), (PAGE 5-15 LOCAL ROADS, PAGE 6-7 RURAL COLLECTORS, PAGE 6-16 URBAN COLLECTORS, PAGE 7-25 URBAN ARTERIALS, AND PAGE 7-41 RURAL ARTERIALS) AND "GUIDE FOR THE DEVELOPMENT OF BICYCLE FACILITIES". AASHTO 2012 AND "GUIDE FOR THE PLANNING, DESIGN AND OPERATION OF PEDESTRIAN FACILITIES", AASHTO 2017. SEE STANDARD DRAWING NO. MM-TS-1 & 2 FOR DETAILS. (9)RURAL SECTIONS FOR DESIGN SPEED, ALIGNMENT, GRADE, AND OTHER DESIGN STANDARDS REFER TO THE FOLLOWING STANDARD DRAWINGS AS APPROPRIATE: LOCAL ROADS - RD11-TS-1A COLLECTOR ROADS - RD11-TS-2, RD11-TS-2A, RD11-TS-2B ARTERIAL ROADS - RD11-TS-3, RD11-TS-3A, RD11-TS-3B, RD11-TS-3C

(10) **DESIGN SPEED - URBAN SECTIONS**

> URBAN ROADS - DESIGN SPEEDS FOR URBAN ARTERIALS GENERALLY RANGE FROM 30-55 MPH WITH LOWER SPEEDS APPLYING IN CENTRAL BUSINESS DISTRICTS AND IN MORE DEVELOPED AREAS, WHILE HIGHER SPEEDS ARE MORE APPLICABLE TO OUTLYING SUBURBAN AND DEVELOPING AREAS.

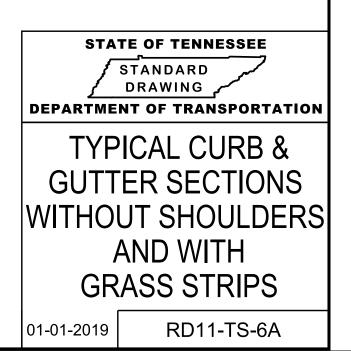
COLLECTOR ROADS - DESIGN SPEEDS OF 30 MPH OR HIGHER SHOULD BE USED WITH CONSIDERATION GIVEN TO AVAILABLE RIGHT-OF-WAY, TERRAIN, ADJACENT DEVELOPMENT, AND PEDESTRIAN PRESENCE. SEE PAGE 2-53 THRU 2-58 AND 6-11 THRU 6-16 FOR ADDITIONAL INFORMATION.

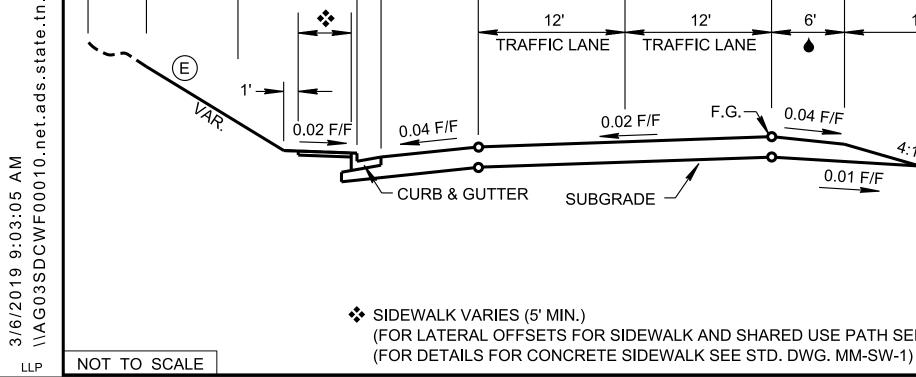
LOCAL ROADS - DESIGN SPEED IS NOT A MAJOR FACTOR, FOR CONSISTENCY IN DESIGN ELEMENTS DESIGN SPEEDS RANGING FROM 20-30 MPH MAY BE USED.

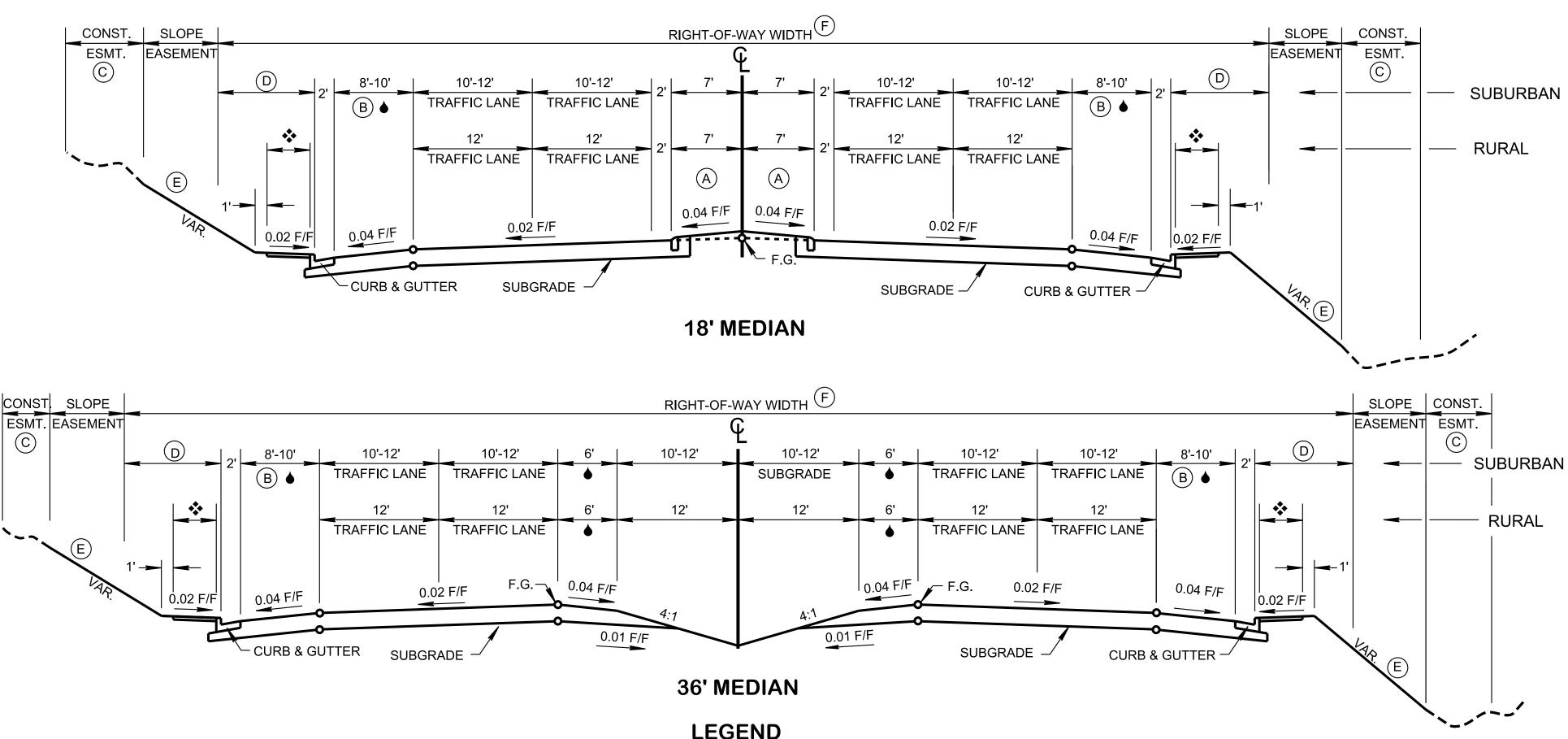
- (11)**GENERAL DESIGN CONSIDERATIONS AND CROSS-SECTIONAL ELEMENTS URBAN SECTIONS**
 - 2011 (GREEN BOOK).

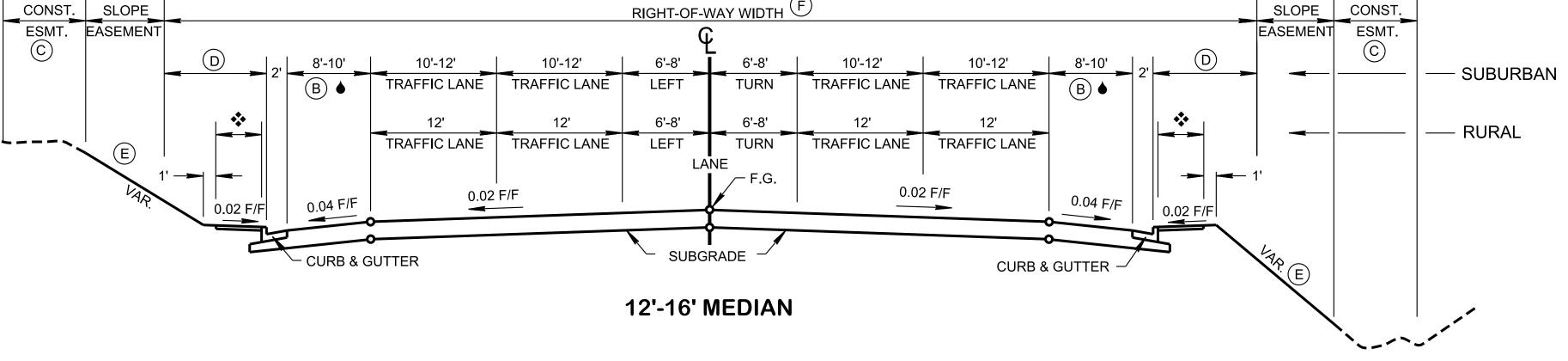
LOCAL ROADS - PAGES 5-11 THRU 5-19 COLLECTORS ROADS - PAGES 6-11 THRU 6-16 ARTERIAL ROADS - PAGES 7-26 THRU 7-38

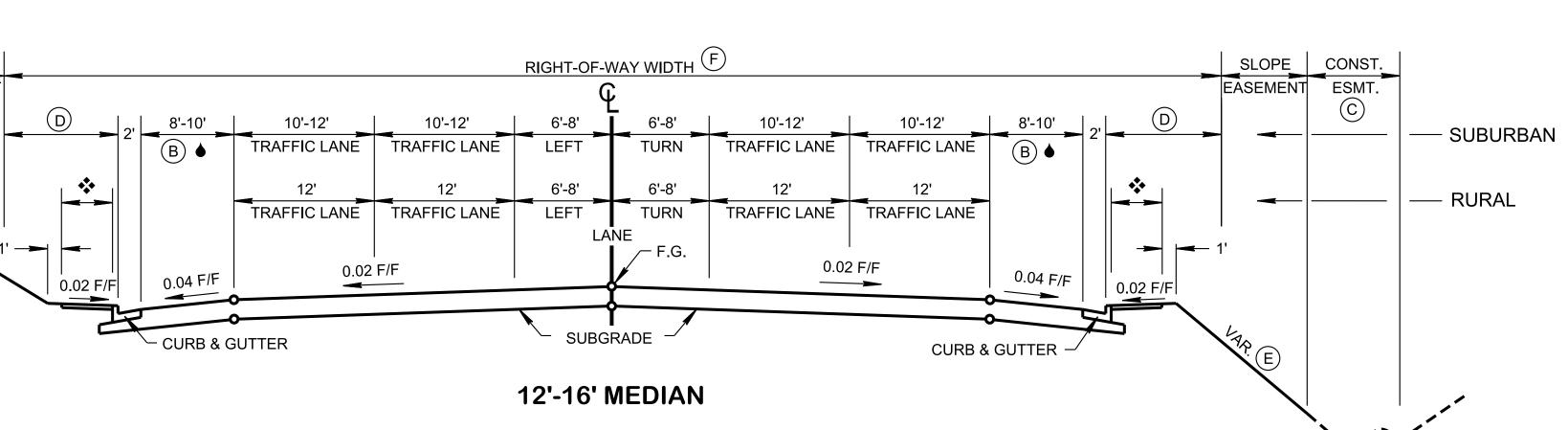
(12)

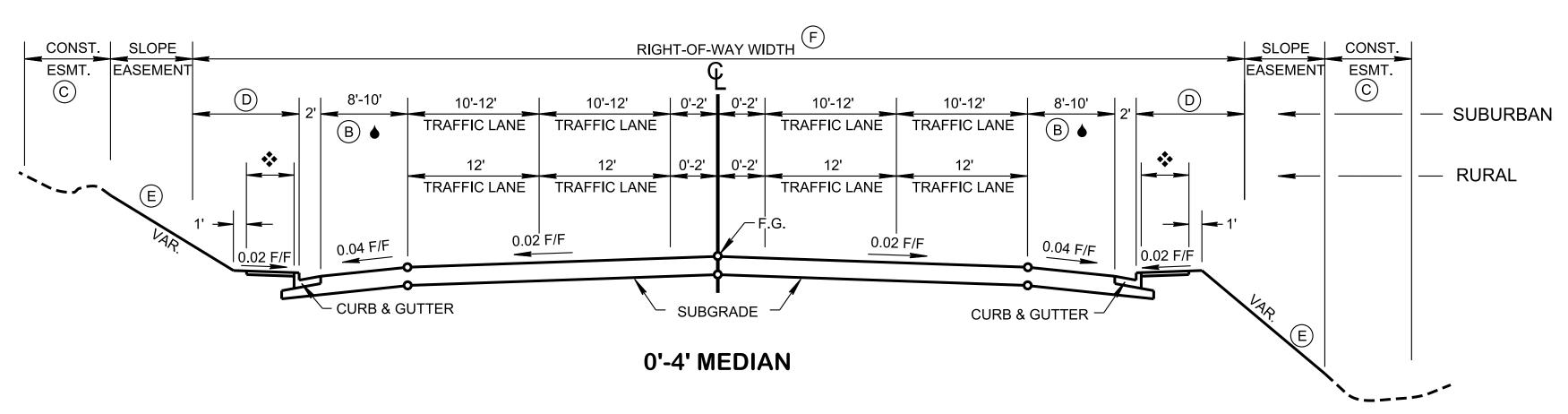

SIDEWALK VARIES (5' MIN.) (FOR LATERAL OFFSETS FOR SIDEWALK AND SHARED USE PATH SEE STD. DWG. MM-TS-2) (FOR DETAILS FOR CONCRETE SIDEWALK SEE STD. DWG. MM-SW-1) MEDIAN CURBS - MEDIAN CURBS WILL BE SLOPING CURBS. VERTICAL CURBS WILL


RIGHT-OF-WAY WIDTH - 10 FT. MINIMUM WIDTH BEHIND FACE OF CURB. WHEN THE SIDEWALK IS LOCATED 9 FT OR MORE BEHIND THE FACE OF CURB, RIGHT-OF-WAY


SERVICE APPURTENANCE (LARGE SIGNS STRUCTURES, SIGNAL, LUMINARY AND UTILITY POLES) SHALL BE PLACED OUTSIDE THE PEDESTRIAN ACCESSIBLE SPACE.


SEE "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO,


SUBURBAN ROADWAYS - FOR DESIGN OF ARTERIAL AND COLLECTOR ROADWAYS DESIGNERS SHOULD FOLLOW GUIDANCE FOR URBAN SECTIONS. FOR LOCAL ROADS CONSIDERATION SHOULD BE GIVEN TO THE CONTEXT OF THE ROADWAY REGARDING WHETHER THE FACILITY SHOULD BE DESIGNED TO URBAN OR RURAL STANDARDS.



SS2 CELL NAME : STDBDR e\DRAFT\100 ROADWAY DESIGN

Ш

0

Ō

σ

ဟ

0

٦

(C)

10

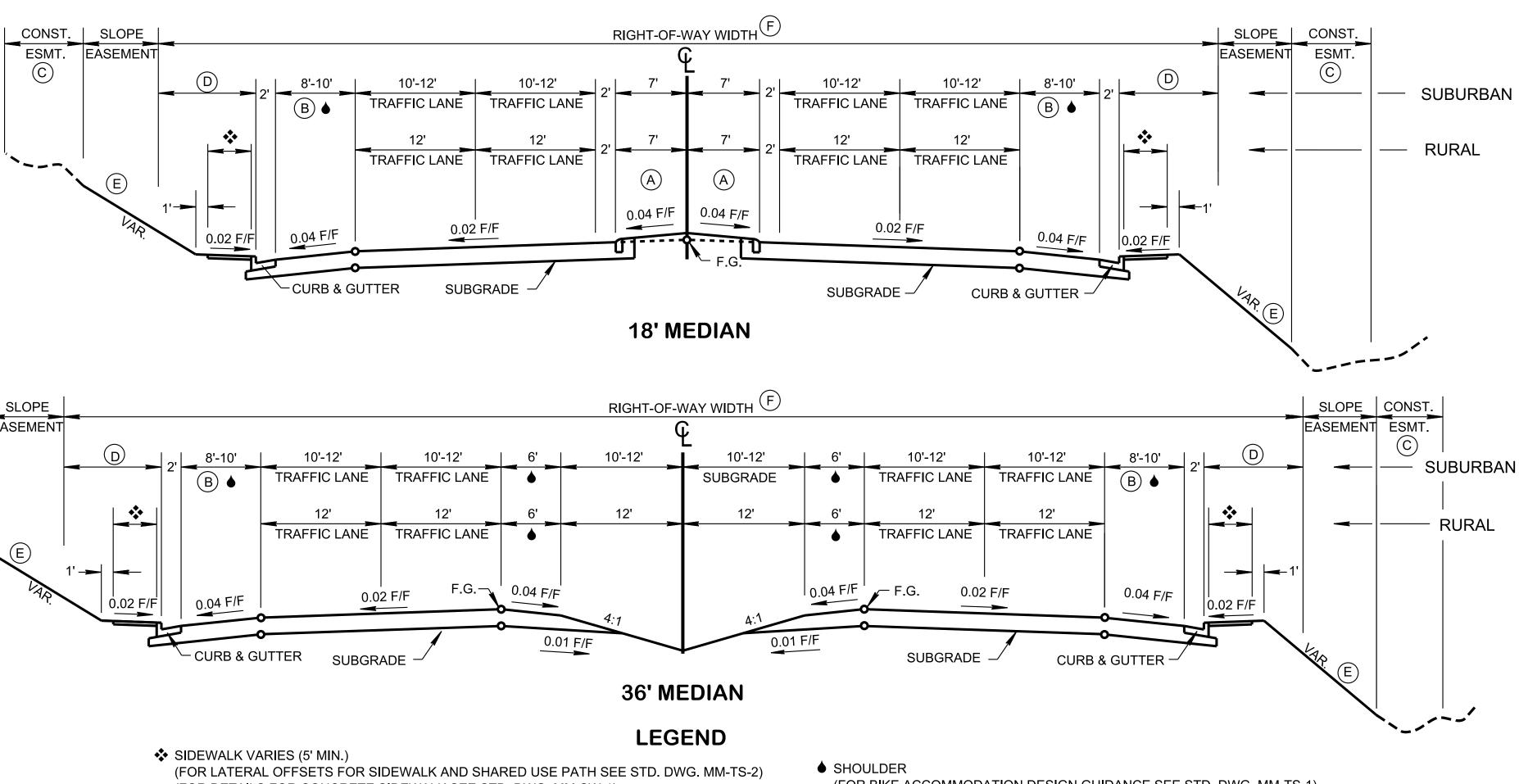
06

20

В S 6 |

 \vdash

Ω \propto


 \circ

Δ

S

Ś

STANDARD

DESIGN NOTES

- A) NOT BE PERMITTED.
- B INVESTMENT REPORT.
- \bigcirc CONSTRUCTION EASEMENT - 10 FEET MINIMUM IS DESIRABLE
- \bigcirc SHALL EXTEND 1 FT. BEHIND SIDEWALK.
- (E) STEEPER THAN 3:1 SLOPE.
- PREFERABLE OUTSIDE THE SIDEWALK AREA AND INSIDE RIGHT-OF-WAY.

- WITH DESIGN SPEEDS OF 55 MPH OR LESS.
- (2) BE USED.
- (3) AASHTO 2011 AND RD11-SE-SERIES STANDARD DRAWINGS.
- (4) FIVE FEET WIDE. ALL SIDEWALKS SHALL BE ADA COMPLIANT.
- (5) THE SIDEWALK AND CLOSE TO THE BACK OF RIGHT-OF-WAY.
- (6)
- (7)2017. SEE STANDARD DRAWING NO. MM-TS-1 & 2 FOR DETAILS.
- **RURAL SECTIONS**

FOR DESIGN SPEED, ALIGNMENT, GRADE, AND OTHER DESIGN STANDARDS REFER TO THE FOLLOWING STANDARD DRAWINGS AS APPROPRIATE:

LOCAL ROADS - RD11-TS-1A COLLECTOR ROADS - RD11-TS-2, RD11-TS-2A, RD11-TS-2B ARTERIAL ROADS - RD11-TS-3, RD11-TS-3A, RD11-TS-3B, RD11-TS-3C

(9) **DESIGN SPEED - URBAN SECTIONS**

> URBAN ROADS - DESIGN SPEEDS FOR URBAN ARTERIALS GENERALLY RANGE FROM 30-55 MPH WITH LOWER SPEEDS APPLYING IN CENTRAL BUSINESS DISTRICTS AND IN MORE DEVELOPED AREAS, WHILE HIGHER SPEEDS ARE MORE APPLICABLE TO OUTLYING SUBURBAN AND DEVELOPING AREAS.

COLLECTOR ROADS - DESIGN SPEEDS OF 30 MPH OR HIGHER SHOULD BE USED WITH CONSIDERATION GIVEN TO AVAILABLE RIGHT-OF-WAY, TERRAIN, ADJACENT DEVELOPMENT, AND PEDESTRIAN PRESENCE. SEE PAGE 2-53 THRU 2-58 AND 6-11 THRU 6-16 FOR ADDITIONAL INFORMATION.

LOCAL ROADS - DESIGN SPEED IS NOT A MAJOR FACTOR, FOR CONSISTENCY IN DESIGN ELEMENTS DESIGN SPEEDS RANGING FROM 20-30 MPH MAY BE USED.

- (10)**GENERAL DESIGN CONSIDERATIONS AND CROSS-SECTIONAL ELEMENTS -URBAN SECTIONS**
 - 2011 (GREEN BOOK).
 - LOCAL ROADS PAGES 5-11 THRU 5-19 COLLECTORS ROADS - PAGES 6-11 THRU 6-16 ARTERIAL ROADS - PAGES 7-26 THRU 7-38
- (11)STANDARDS.
- (12)

MEDIAN CURBS - MEDIAN CURBS WILL BE SLOPING CURBS. VERTICAL CURBS WILL

SHOULDER WIDTH - SHOULDER WIDTH WILL BE SPECIFIED IN THE TRANSPORTATION

RIGHT-OF-WAY WIDTH - 10 FT. MINIMUM WIDTH BEHIND FACE OF CURB. WHEN THE SIDEWALK IS LOCATED 9 FT OR MORE BEHIND THE FACE OF CURB, RIGHT-OF-WAY

SLOPES - 3:1 SLOPES OR FLATTER ARE DESIRABLE AND ARE THE MAXIMUM IN REGION IV. 2:1 SLOPES ARE APPLICABLE IN AREAS WHERE RIGHT-OF-WAY RESTRICTIONS, ENVIRONMENTAL CONSIDERATIONS, OR COST WARRANTS A

SERVICE APPURTENANCE (LARGE SIGNS STRUCTURES, SIGNAL, LUMINARY AND UTILITY POLES) SHALL BE PLACED OUTSIDE THE PEDESTRIAN ACCESSIBLE SPACE,

GENERAL NOTES

THIS STANDARD DRAWING IS INTENDED TO BE USED IN TRANSITIONAL ZONES (SUBURBAN) BETWEEN RURAL AND FULLY DEVELOPED URBAN AREAS WHERE CURB AND GUTTER IS NEEDED FOR DRAINAGE OR TO LIMIT RIGHT OF WAY,

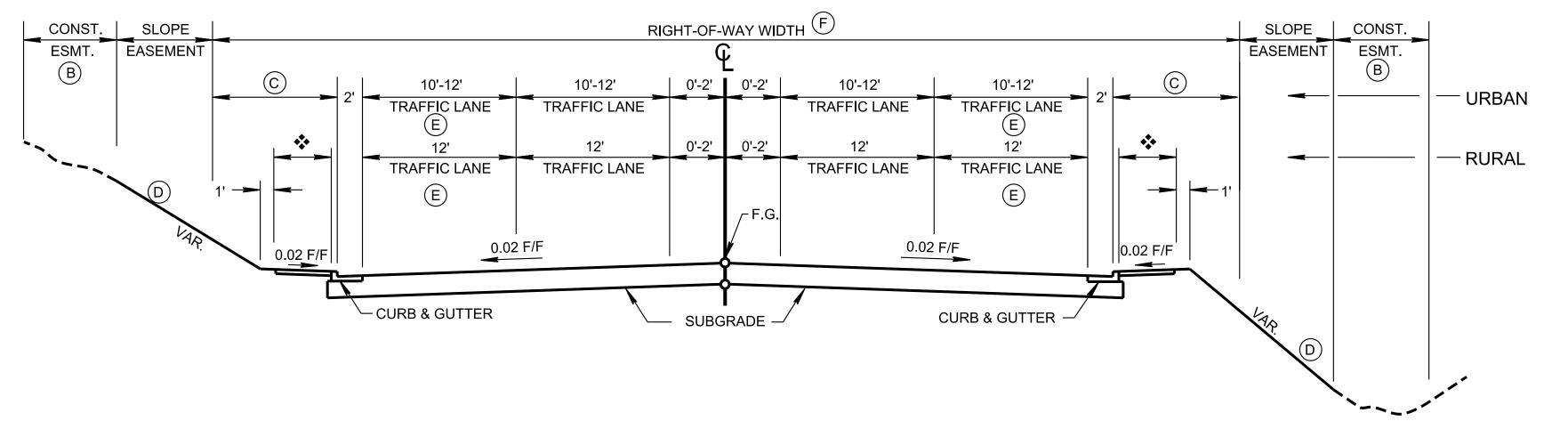
OUTSIDE CURBS - FOR DESIGN SPEEDS OF LESS THAN 45 MPH, A 6" VERTICAL CURB SHOULD BE USED. FOR DESIGN SPEEDS 45-55 MPH. 6 INCH SLOPING CURBS SHALL

SUPERELEVATION AND MEDIAN BARRIERS - SEE "ROADSIDE DESIGN GUIDE"

SIDEWALKS - SEE STANDARD DRAWING RD11-TS-6 WHEN GRASS STRIP IS LOCATED BETWEEN THE CURB AND SIDEWALK. SIDEWALK WIDTH SHALL NOT INCLUDE THE SIX INCH WIDTH OF PROPOSED CURB. SIDEWALK WIDTH SHOULD BE A MINIMUM OF

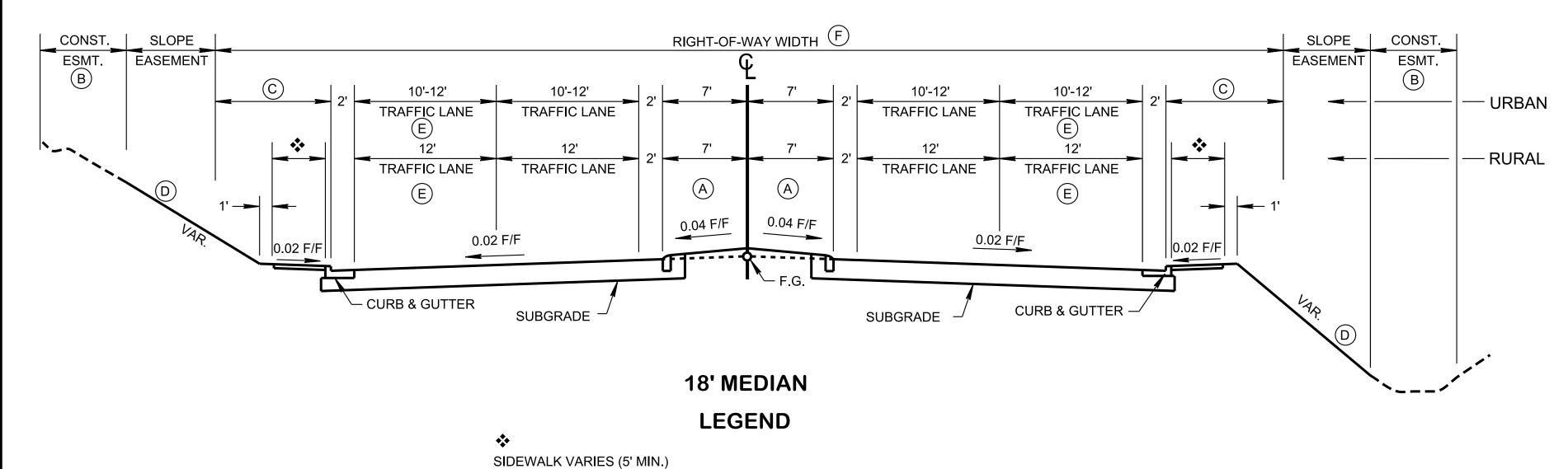
ABOVE GROUND UTILITIES - ABOVE GROUND UTILITIES SHOULD BE LOCATED BEHIND

PARKING - REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK), ARTERIALS- PAGE 7-34,


BICYCLE AND PEDESTRIAN FACILITIES - REFERENCE SHOULD BE MADE TO "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK) (PAGE 5-15 LOCAL ROADS, PAGE 6-7 RURAL COLLECTORS, PAGE 6-16 URBAN COLLECTORS, PAGE 7-25 URBAN ARTERIALS, AND PAGE 7-41 RURAL ARTERIALS) AND "GUIDE FOR THE DEVELOPMENT OF BICYCLE FACILITIES", AASHTO 2012 AND "GUIDE FOR THE PLANNING, DESIGN AND OPERATION OF PEDESTRIAN FACILITIES", AASHTO

SEE "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO,

SUBURBAN ROADWAYS - FOR DESIGN OF ARTERIAL AND COLLECTOR ROADWAYS DESIGNERS SHOULD FOLLOW GUIDANCE FOR URBAN SECTIONS. FOR LOCAL ROADS CONSIDERATION SHOULD BE GIVEN TO THE CONTEXT OF THE ROADWAY REGARDING WHETHER THE FACILITY SHOULD BE DESIGNED TO URBAN OR RURAL


ON STREET PARKING IS NOT PERMITTED ON HIGH SPEED SUBURBAN ROADWAYS.

0'-4' MEDIAN

σ $\overline{}$ 0

190 0 \sim

S6C

 \vdash

~

RD

C

NOT BE PERMITTED. CONSTRUCTION EASEMENT - 10 FEET MINIMUM IS DESIRABLE. B $(\widehat{\mathbf{C}})$ SHALL EXTEND 1 FT. BEHIND SIDEWALK. (D)STEEPER THAN 3:1 SLOPE. (E) 14' LANE WIDTH SHOULD BE CONSIDERED FOR SHARED LANES.

(A)

F SERVICE APPURTENANCE (LARGE SIGNS STRUCTURES, SIGNAL, LUMINARY AND UTILITY POLES) SHALL BE PLACED OUTSIDE THE PEDESTRIAN ACCESSIBLE SPACE, PREFERABLE OUTSIDE THE SIDEWALK AREA AND INSIDE RIGHT-OF-WAY.

	GENERAL
1	THESE SECTIONS ARE FOR URBAN AND S ROADWAYS WHERE ENVIRONMENTAL OF RIGHT-OF-WAY AVAILABLE WITH DESIGN OR LESS.
2	OUTSIDE CURBS - FOR DESIGN SPEEDS O SHOULD BE USED. FOR 45 MPH DESIGN,
3	SUPERELEVATION AND MEDIAN BARRIER AASHTO 2011 AND RD11-SE-SERIES STAN
4	SIDEWALKS - SEE STANDARD DRAWING F BETWEEN THE CURB AND SIDEWALK. SI SIX INCH WIDTH OF PROPOSED CURB. SI FIVE FEET WIDE. ALL SIDEWALKS SHALL
5	ABOVE GROUND UTILITIES - ABOVE GROUTHE SIDEWALK AND CLOSE TO THE BACK
6	PARKING - REFERENCE SHOULD BE MADI OF HIGHWAYS AND STREETS" AASHTO, 2
7	BICYCLE AND PEDESTRIAN FACILITIES - F POLICY OF GEOMETRIC DESIGN OF HIGH (GREEN BOOK), (PAGE 5-15 LOCAL ROADS PAGE 6-16 URBAN COLLECTORS, PAGE 7- RURAL ARTERIALS) AND "GUIDE FOR THE AASHTO 2012 AND "GUIDE FOR THE PLAN PEDESTRIAN FACILITIES", AASHTO 2017. S & 2 FOR DETAILS.
8	RURAL SECTIONS FOR DESIGN SPEED, ALIGNMENT, GRADE TO THE FOLLOWING STANDARD DRAWING
	LOCAL ROADS - RD11-TS-1 COLLECTOR ROADS - RD11-TS-2, RD11 ARTERIAL ROADS - RD11-TS-3, RD11-TS
9	DESIGN SPEED - URBAN SECTIONS
	URBAN ROADS - DESIGN SPEEDS FOR UR 30-55 MPH WITH LOWER SPEEDS APPLYIN AND IN MORE DEVELOPED AREAS, WHILE TO OUTLYING SUBURBAN AND DEVELOPI
	COLLECTOR ROADS - DESIGN SPEEDS OF CONSIDERATION GIVEN TO AVAILABLE RI DEVELOPMENT, AND PEDESTRIAN PRESE THRU 6-16 FOR ADDITIONAL INFORMATIO
	LOCAL ROADS - DESIGN SPEED IS NOT A

(10)**GENERAL DESIGN CONSIDERATIONS AND CROSS-SECTIONAL ELEMENTS -URBAN SECTIONS**

SEE "A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK).

LOCAL ROADS - PAGES 5-11 THRU 5-19 COLLECTORS ROADS - PAGES 6-11 THRU 6-16 ARTERIAL ROADS - PAGES 7-26 THRU 7-38

(11)

DESIGN NOTES

MEDIAN CURBS - MEDIAN CURBS WILL BE SLOPING CURBS. VERTICAL CURBS WILL

RIGHT-OF-WAY WIDTH - 10 FT. MINIMUM WIDTH BEHIND FACE OF CURB. WHEN THE SIDEWALK IS LOCATED 9 FT OR MORE BEHIND THE FACE OF CURB. RIGHT-OF-WAY

SLOPES - 3:1 SLOPES OR FLATTER ARE DESIRABLE AND ARE THE MAXIMUM IN REGION IV. 2:1 SLOPES ARE APPLICABLE IN AREAS WHERE RIGHT-OF-WAY RESTRICTIONS, ENVIRONMENTAL CONSIDERATIONS, OR COST WARRANTS A

L NOTES

SUBURBAN ROADWAYS OR RURAL R OTHER FACTORS LIMIT THE SPEEDS OF 45 MILES PER HOUR

OF LESS THAN 45 MPH, A 6" VERTICAL CURB 6 INCH SLOPING CURBS SHALL BE USED.

RS - SEE "ROADSIDE DESIGN GUIDE", NDARD DRAWINGS.

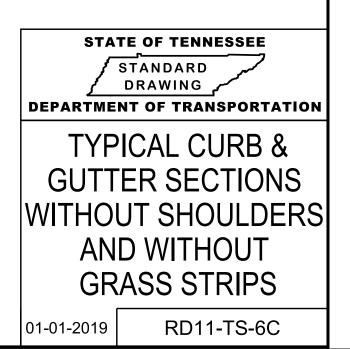
RD11-TS-6A WHEN GRASS STRIP IS LOCATED SIDEWALK WIDTH SHALL NOT INCLUDE THE DEWALK WIDTH SHOULD BE A MINIMUM OF BE ADA COMPLIANT.

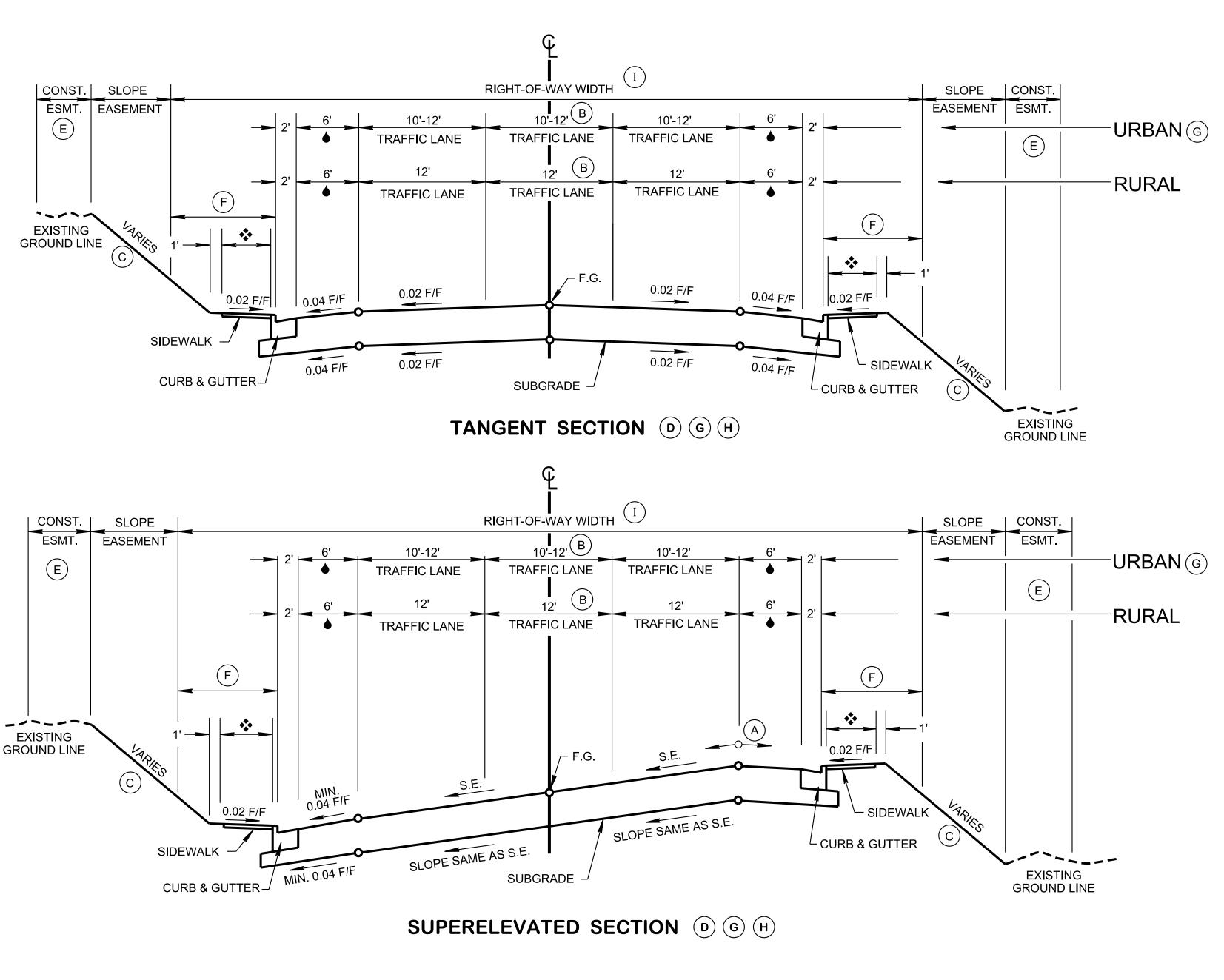
OUND UTILITIES SHOULD BE LOCATED BEHIND K OF RIGHT-OF-WAY.

DE TO "A POLICY OF GEOMETRIC DESIGN 2011 (GREEN BOOK), ARTERIALS- PAGE 7-34.

REFERENCE SHOULD BE MADE TO "A HWAYS AND STREETS" AASHTO, 2011 DS, PAGE 6-7 RURAL COLLECTORS, 2-25 URBAN ARTERIALS, AND PAGE 7-41 E DEVELOPMENT OF BICYCLE FACILITIES", NNING, DESIGN AND OPERATION OF SEE STANDARD DRAWING NO. MM-TS-1

E, AND OTHER DESIGN STANDARDS REFER IGS AS APPROPRIATE:


1-TS-2A, RD11-TS-2B TS-3A, RD11-TS-3B, RD11-TS-3C


RBAN ARTERIALS GENERALLY RANGE FROM ING IN CENTRAL BUSINESS DISTRICTS E HIGHER SPEEDS ARE MORE APPLICABLE PING AREAS.

OF 30 MPH OR HIGHER SHOULD BE USED WITH RIGHT-OF-WAY, TERRAIN, ADJACENT ENCE. SEE PAGE 2-53 THRU 2-58 AND 6-11

LOCAL ROADS - DESIGN SPEED IS NOT A MAJOR FACTOR, FOR CONSISTENCY IN DESIGN ELEMENTS DESIGN SPEEDS RANGING FROM 20-30 MPH MAY BE USED.

SUBURBAN ROADWAYS - FOR DESIGN OF ARTERIAL AND COLLECTOR ROADWAYS DESIGNERS SHOULD FOLLOW GUIDANCE FOR URBAN SECTIONS. FOR LOCAL ROADS CONSIDERATION SHOULD BE GIVEN TO THE CONTEXT OF THE ROADWAY REGARDING WHETHER THE FACILITY SHOULD BE DESIGNED TO URBAN OR RURAL STANDARDS.

LEGEND

* SIDEWALK VARIES (5' MIN.)

(FOR LATERAL OFFSETS FOR SIDEWALK AND SHARED USE PATH SEE STD. DWG. MM-TS-2) (FOR DETAILS FOR CONCRETE SIDEWALK SEE STD. DWG. MM-SW-1)

SHOULDER

(FOR BIKE ACCOMMODATION DESIGN GUIDANCE SEE STD. DWG. MM-TS-1)

2/4/2019 2:06:44 PM C:\Users\jj00547\Desktop\3 LLP

0101.dgn

20

S

Criteria\RD11

Design

and

ctions

Se

Typical

RD11

В	THE DESIRABLE LANE WIDTH IN INDUSTRIAL AREAS WITH HEAVY TRUCK
С	ON URBAN PROJECTS THE BACKSLOPE AND FORESLOPE DESIGN WILL VA
	3:1 SLOPES OR FLATTER ARE DESIRABLE AND 2:1 SLOPES ARE APPL RIGHT-OF-WAY RESTRICTIONS OR COST WARRANTS A STEEPER THA SLOPE IN REGION IV IS 3:1.
D	THESE TYPICAL SECTIONS WERE DEVELOPED FOR LOCAL ROADS AND S WITH DESIGN SPEEDS 45 MILES PER HOUR AND LOWER. IF A CTWLTL IS HOUR OR ON AN ARTERIAL, THE DESIGNER WILL REFER TO THE PROPER DRAWING FOR TYPICAL SECTION REQUIREMENTS.
E	10 FEET MINIMUM DESIRABLE.
F	10' MINIMUM RIGHT-OF-WAY WIDTH IS REQUIRED BEHIND FACE OF CURB. SIDEWALK IS 9' OR MORE FROM THE FACE OF THE CURB, RIGHT-OF-WAY BEHIND THE SIDEWALK.
G	URBAN ROADWAYS CROSS SECTIONAL ELEMENTS:
	FOR INFORMATION REGARDING WIDTH OF TRAVELED WAY, SHOULDERS CURBS, AND OTHER CROSS-SECTIONAL ELEMENTS FOR LOCAL ROADS, F 5-16 AND FOR COLLECTOR ROADS, REFER TO PAGES 6-13 THROUGH 6-16
H	URBAN ROADWAYS GENERAL DESIGN CONSIDERATIONS:
	FOR INFORMATION REGARDING DESIGN SPEED, ALIGNMENT, GRADES, SU AND OTHER DESIGN CONSIDERATIONS FOR LOCAL ROADS, REFER TO PA COLLECTOR ROADS, REFER TO PAGES 6-11 THROUGH 6-13.
	SERVICE APPURTENANCE (LARGE SIGNS STRUCTURES, SIGNAL, LUMINA UTILITY POLES) SHALL BE PLACED OUTSIDE THE PEDESTRIAN ACCESSIB PREFERABLE OUTSIDE THE SIDEWALK AREA AND INSIDE RIGHT-OF-WAY.

(A)

DIFFERENCE OF 7%.

	GENERAL NOTE
	FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REF OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO,
2	REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSI
3	THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNNELS AND OT ACCORDANCE WITH PRINCIPALS OF AASHTO LRFD BRIDGE DES LOADING SHOULD BE THE HL-93 CALIBRATED LIVE LOAD DESIGI FOR NEW AND REHABILITATED BRIDGES SHALL BE EQUAL TO T ROADWAY, CURB-TO-CURB OR FULL SHOULDER WIDTH AS APPI
4	FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HA AT LEAST EQUAL TO THE WIDTH OF THE TRAVELED WAY PLUS 2 BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE WIDENING C PROVIDE AT LEAST 3-FEET CLEARANCE ON EACH SIDE OR BE H AS AN INTERIM MEASURE, ALL BRIDGES THAT ARE LESS THAN F SPECIAL NARROW BRIDGE TREATMENTS SUCH AS SIGNING AND
5	THIS TYPICAL SECTION IS DESIGNED TO ACCOMMODATE AN AV VEHICLES PER DAY, WHICH IS CONSIDERED TO BE THE TRAFFIC LEFT TURN LANE (TWLTL) FOR A 2-LANE HIGHWAY. THE TYPICA THAN 5,000 VEHICLES PER DAY USES THE DESIGN STANDARDS RD11-TS-1, RD11-TS-2 AND RD11-TS-3.
6	WHEN ENCOUNTERING MAJOR INTERSECTIONS, DO NOT EXTENTURN LANE (CTWLTL) UP TO THE INTERSECTION. TERMINATE T INTERSECTION TO ALLOW DEVELOPMENT OF AN EXCLUSIVE LE MAY NOT WARRANT AN EXCLUSIVE LEFT-TURN LANE. SEE STRUCURRENT EDITION OF THE "MANUAL ON UNIFORM TRAFFIC CON
7	ON WIDENING OF EXISTING TWO-LANE HIGHWAY TO THREE-LAN BE REDUCED TO ZERO FEET AND THE ROADWAY LANE WIDTH T FOLLOWING CONDITIONS:
	(7a) THE DESIGN ADT IS 20,000 VEHICLES PER DAY OR LESS
	(7b) THE DESIGN SPEED IS 45 MILES PER HOUR OR LESS.
	(7c) THERE ARE RESTRICTED AND/OR LIMITED CLEARANCE EXISTING SOCIAL, ENVIRONMENTAL OR ECONOMIC CO
	(7d) WHEN SUFFICIENT NUMBERS OF ACCIDENTS AND/OR E MID-BLOCK LEFT TURNS TO JUSTIFY A CONTINUOUS LE TWO-LANE ROADWAY.
8	ABOVE GROUND UTILITIES SHOULD BE LOCATED BEHIND THE S RIGHT-OF-WAY.
9	WHEN SIDEWALK IS LOCATED NEXT TO THE CURB, SIDEWALK WINCH WIDTH OF PROPOSED CURB. SIDEWALK SHALL BE A MININ
10	IF DESIGN INCLUDES A GRASS STRIP, SEE STANDARD DRAWING
	SEE STANDARD DRAWING S-PL-6 & S-PL-6A FOR TYPICAL GUAR

THE SLOPES OF THE SHOULDER AND ROADWAY PAVEMENT SHALL NOT EXCEED AN ALGEBRAIC

VY TRUCK TRAFFIC IS 14 FEET.

IGN WILL VARY FROM PROJECT TO PROJECT,

ARE APPLICABLE IN AREAS WHERE EEPER THAN 3:1 SLOPE. THE MAXIMUM

ADS AND STREETS AND COLLECTOR ROADS CTWLTL IS NEEDED ABOVE 45 MILES PER HE PROPER RD11-TS-SERIES STANDARD

OF CURB. WHEN THE BACKSIDE OF THE IT-OF-WAY SHALL EXTEND MINIMUM 1'

HOULDERS, PARKING LANES, MEDIANS, L ROADS, REFER TO PAGES 5-13 THROUGH ROUGH 6-16.

GRADES, SUPERELEVATION, SIGHT DISTANCE, EFER TO PAGES 5-11 THROUGH 5-13 AND FOR

AL, LUMINARY AND ACCESSIBLE SPACE.

ES

FERENCE SHOULD BE MADE TO "A POLICY 2011 (GREEN BOOK).

DE DESIGN GUIDE," AASHTO, 2011.

THER STRUCTURES SHOULD BE IN SIGN SPECIFICATIONS. THE DESIGN NATION. THE MINIMUM CLEAR WIDTH THE FULL WIDTH OF THE APPROACH LICABLE.

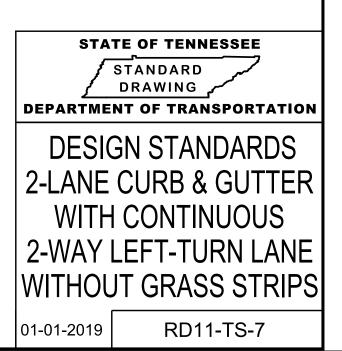
AVE ADEQUATE STRENGTH AND A WIDTH 2-FEET CLEARANCE ON EACH SIDE. OR REPLACEMENT IF THEY DO NOT IL-93 CALIBRATED LIVE LOAD CAPACITY. FULL WIDTH SHOULD BE CONSIDERED FOR ND PAVEMENT MARKING.

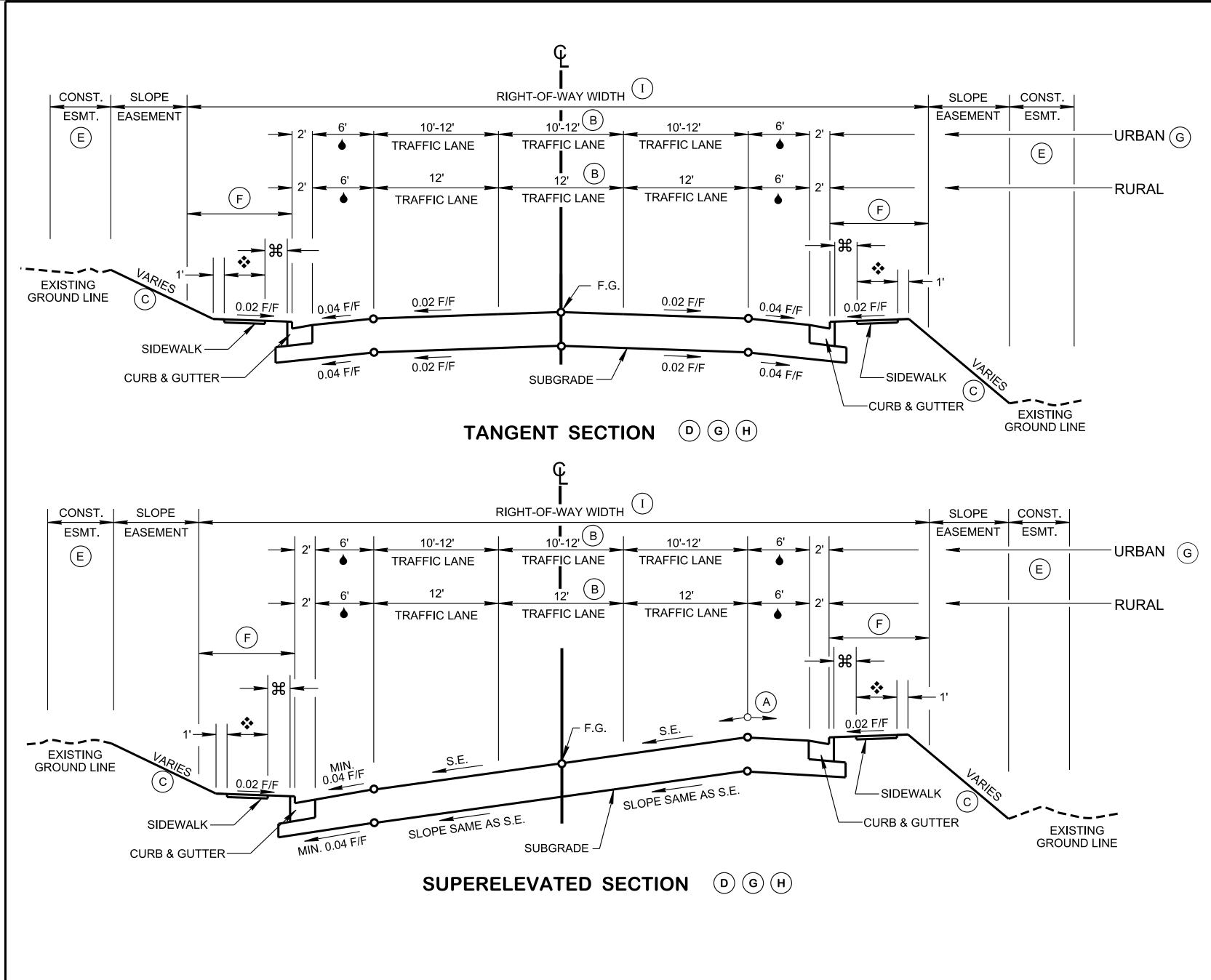
/ERAGE DAILY TRAFFIC OF 5,000 TO 12,500 IC VOLUME NEEDED TO JUSTIFY THE TWO-WAY AL SECTION DESIGN FOR VOLUMES LESS SHOWN ON STANDARD DRAWINGS

ND THE CONTINUOUS TWO-WAY LEFT THE CTWLTL IN ADVANCE OF THE EFT-TURN LANE. MINOR INTERSECTIONS IPING DETAILS SHOWN ON T-M-1 OR NTROL DEVICES."

NE HIGHWAY THE SHOULDER WIDTH MAY TO ELEVEN (11) FEET UNDER THE

S FOR RIGHT-OF-WAY DUE TO THE ONDITIONS.


DELAYS IN TRAFFIC EXIST DUE TO _EFT TURN LANE ON EXISTING


SIDEWALK AND CLOSE TO THE

WIDTH SHALL NOT INCLUDE THE SIX IMUM OF FIVE FEET WIDE.

IG RD11-TS-7A.

RDRAIL PLACEMENT.

LEGEND

GRASS STRIP VARIES (FOR LATERAL OFFSETS FOR SIDEWALK AND SHARED USE PATH SEE STD. DWG. MM-TS-2)

•••

SIDEWALK VARIES (5' MIN.) (FOR LATERAL OFFSETS FOR SIDEWALK AND SHARED USE PATH SEE STD. DWG. MM-TS-2)

(FOR DETAILS FOR CONCRETE SIDEWALK SEE STD. DWG. MM-SW-1)

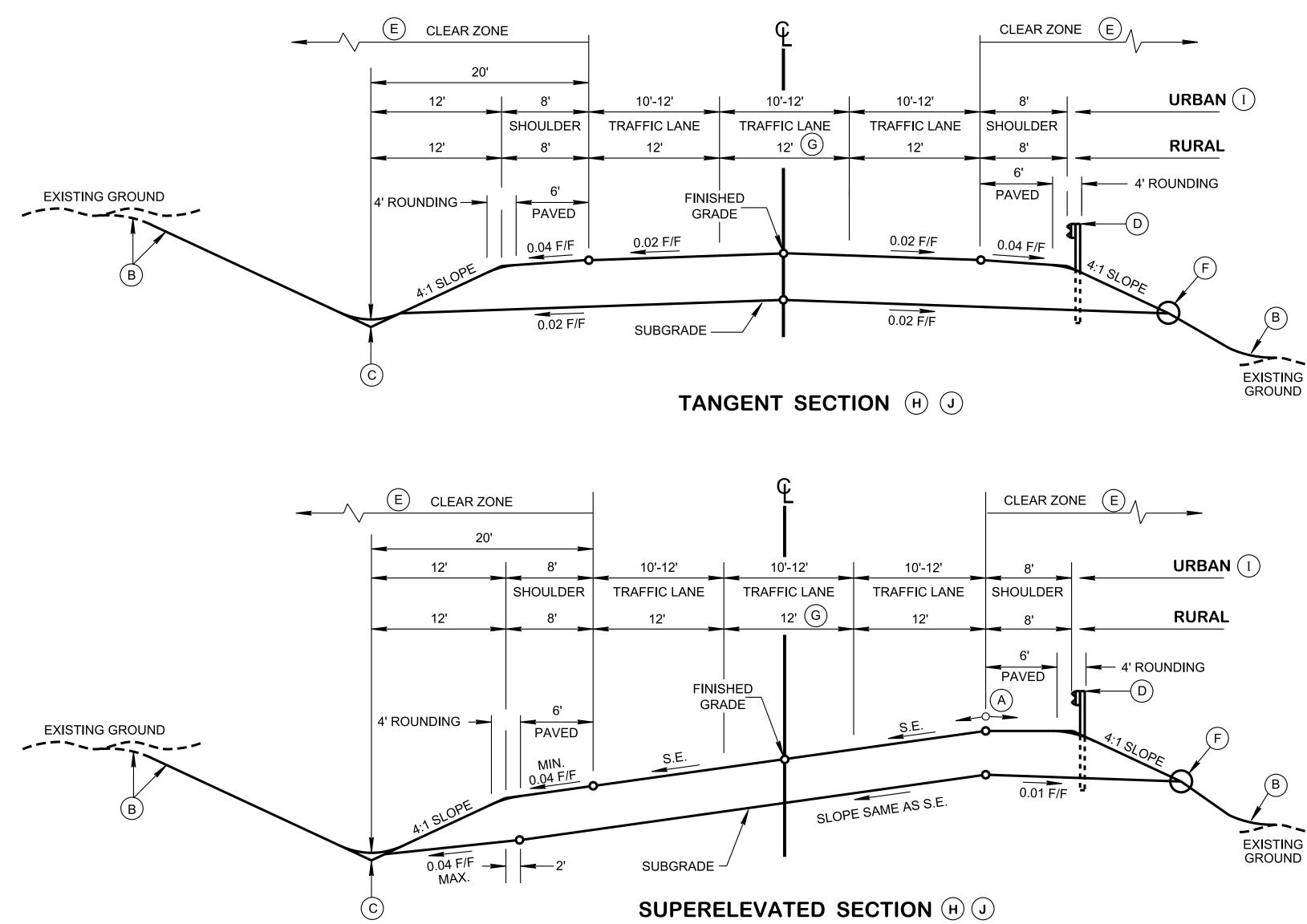
SHOULDER

(FOR BIKE ACCOMMODATION DESIGN GUIDANCE SEE STD. DWG. MM-TS-1)

NOT TO SCALE

DESIGN NOTES

(A)DIFFERENCE OF 7%. (B) THE DESIRABLE LANE WIDTH IN INDUSTRIAL AREAS WITH HEAVY TRUCK TRAFFIC IS 14 FEET. (c) ON URBAN PROJECTS THE BACKSLOPE AND FORESLOPE DESIGN WILL VARY FROM PROJECT TO PROJECT, AS A GENERAL RULE USE THE FOLLOWING: 3:1 SLOPES OR FLATTER ARE DESIRABLE AND 2:1 SLOPES ARE APPLICABLE IN AREAS WHERE RIGHT-OF-WAY RESTRICTIONS OR COST WARRANTS A STEEPER THAN 3:1 SLOPE. THE MAXIMUM SLOPE IN REGION IV IS 3:1. (D)THESE TYPICAL SECTIONS WERE DEVELOPED FOR LOCAL ROADS AND STREETS AND COLLECTOR ROADS WITH DESIGN SPEEDS 45 MILES PER HOUR AND LOWER. IF A CTWLTL IS NEEDED ABOVE 45 MILES PER HOUR OR ON AN ARTERIAL, THE DESIGNER WILL REFER TO THE PROPER RD11-TS-SERIES STANDARD DRAWING FOR TYPICAL SECTION REQUIREMENTS. 10 FEET MINIMUM DESIRABLE. (E) 10' MINIMUM RIGHT-OF-WAY WIDTH IS REQUIRED BEHIND FACE OF CURB. WHEN THE BACKSIDE OF THE SIDEWALK IS 9' OR MORE FROM THE FACE OF THE CURB. RIGHT-OF-WAY SHALL EXTEND MINIMUM 1' **BEHIND THE SIDEWALK.** (G)**URBAN ROADWAYS CROSS SECTIONAL ELEMENTS:** FOR INFORMATION REGARDING WIDTH OF TRAVELED WAY, SHOULDERS, PARKING LANES, MEDIANS, CURBS, AND OTHER CROSS-SECTIONAL ELEMENTS FOR LOCAL ROADS, REFER TO PAGES 5-13 THROUGH 5-16 AND FOR COLLECTOR ROADS, REFER TO PAGES 6-13 THROUGH 6-16. **URBAN ROADWAYS GENERAL DESIGN CONSIDERATIONS:** (H) FOR INFORMATION REGARDING DESIGN SPEED, ALIGNMENT, GRADES, SUPERELEVATION, SIGHT DISTANCE, AND OTHER DESIGN CONSIDERATIONS FOR LOCAL ROADS, REFER TO PAGES 5-11 THROUGH 5-13 AND FOR COLLECTOR ROADS, REFER TO PAGES 6-11 THROUGH 6-13. SERVICE APPURTENANCE (LARGE SIGNS STRUCTURES, SIGNAL, LUMINARY AND UTILITY POLES) SHALL BE PLACED OUTSIDE THE PEDESTRIAN ACCESSIBLE SPACE, PREFERABLE OUTSIDE THE SIDEWALK AREA AND INSIDE RIGHT-OF-WAY.


GENERAL NOTES

- FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO A POLICY OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK).
- (2)REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADSIDE DESIGN GUIDE," AASHTO, 2011.
- (3)THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNNELS AND OTHER STRUCTURES SHOULD BE IN ACCORDANCE WITH PRINCIPALS OF AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS. THE DESIGN LOADING SHOULD BE THE HL-93 CALIBRATED LIVE LOAD DESIGNATION. THE MINIMUM CLEAR WIDTH FOR NEW AND REHABILITATED BRIDGES SHALL BE EQUAL TO THE FULL WIDTH OF THE APPROACH ROADWAY, CURB-TO-CURB OR FULL SHOULDER WIDTH AS APPLICABLE.
- (4)FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD HAVE ADEQUATE STRENGTH AND A WIDTH AT LEAST EQUAL TO THE WIDTH OF THE TRAVELED WAY PLUS 2-FEET CLEARANCE ON EACH SIDE. BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE WIDENING OR REPLACEMENT IF THEY DO NOT PROVIDE AT LEAST 3-FEET CLEARANCE ON EACH SIDE OR BE HL-93 CALIBRATED LIVE LOAD CAPACITY AS AN INTERIM MEASURE, ALL BRIDGES THAT ARE LESS THAN FULL WIDTH SHOULD BE CONSIDERED FOR SPECIAL NARROW BRIDGE TREATMENTS SUCH AS SIGNING AND PAVEMENT MARKING.
- THIS TYPICAL SECTION IS DESIGNED TO ACCOMMODATE AN AVERAGE DAILY TRAFFIC OF 5,000 TO 12,500 VEHICLES PER DAY, WHICH IS CONSIDERED TO BE THE TRAFFIC VOLUME NEEDED TO JUSTIFY THE TWO-WAY (5)LEFT TURN LANE (TWLTL) FOR A 2-LANE HIGHWAY. THE TYPICAL SECTION DESIGN FOR VOLUMES LESS THAN 5,000 VEHICLES PER DAY USES THE DESIGN STANDARDS SHOWN ON STANDARD DRAWINGS RD11-TS-1, RD11-TS-2 AND RD11-TS-3.
- (6)WHEN ENCOUNTERING MAJOR INTERSECTIONS, DO NOT EXTEND THE CONTINUOUS TWO-WAY LEFT TURN LANE (CTWLTL) UP TO THE INTERSECTION. TERMINATE THE CTWLTL IN ADVANCE OF THE INTERSECTION TO ALLOW DEVELOPMENT OF AN EXCLUSIVE LEFT-TURN LANE. MINOR INTERSECTIONS MAY NOT WARRANT AN EXCLUSIVE LEFT-TURN LANE. SEE STRIPING DETAILS SHOWN ON T-M-1 OR CURRENT EDITION OF THE "MANUAL ON UNIFORM TRAFFIC CONTROL DEVICES."
- ON WIDENING OF EXISTING TWO-LANE HIGHWAY TO THREE-LANE HIGHWAY THE SHOULDER WIDTH MAY BE REDUCED TO ZERO FEET AND THE ROADWAY LANE WIDTH TO ELEVEN (11) FEET UNDER THE FOLLOWING CONDITIONS:
 - (7a) THE DESIGN ADT IS 20,000 VEHICLES PER DAY OR LESS.
 - (7b) THE DESIGN SPEED IS 45 MILES PER HOUR OR LESS.
 - (7c)THERE ARE RESTRICTED AND/OR LIMITED CLEARANCES FOR RIGHT-OF-WAY DUE TO THE EXISTING SOCIAL, ENVIRONMENTAL OR ECONOMIC CONDITIONS.
 - WHEN SUFFICIENT NUMBERS OF ACCIDENTS AND/OR DELAYS IN TRAFFIC EXIST DUE TO (7d) MID-BLOCK LEFT TURNS TO JUSTIFY A CONTINUOUS LEFT TURN LANE ON EXISTING TWO-LANE ROADWAY.
- (8)ABOVE GROUND UTILITIES SHOULD BE LOCATED BEHIND THE SIDEWALK AND CLOSE TO THE RIGHT-OF-WAY.
- (9)INCH WIDTH OF PROPOSED CURB. SIDEWALK SHALL BE A MINIMUM OF FIVE FEET WIDE.
- (10)ABOVE GROUND UTILITIES SHALL NOT BE PLACED IN THE GRASS STRIP. (11)IN URBAN ARES THE GRASS STRIP SHOULD BE 3' WIDE. IN SUBURBAN AREAS THE GRASS STRIP
- SHOULD BE 5' WIDE.
- (12)SEE STANDARD DRAWING S-PL-6 & S-PL-6A FOR TYPICAL GUARDRAIL PLACEMENT.

THE SLOPES OF THE SHOULDER AND ROADWAY PAVEMENT SHALL NOT EXCEED AN ALGEBRAIC

WHEN SIDEWALK IS LOCATED NEXT TO THE CURB, SIDEWALK WIDTH SHALL NOT INCLUDE THE SIX

	DESIGN NOTE
A	THE SLOPE OF THE SHOULDER AND THE ROADWAY PAVEMEN DIFFERENCE OF 7%.
В	SEE STANDARD DRAWING RD11-S-11 FOR FILL AND CUT SLOPE SLOPES AND TOE ROUNDING ON TOP OF CUT SLOPES AND TO TREATMENT AND SUBGRADE ROUNDING IF APPLICABLE.
С	SEE STANDARD DRAWING RD11-S-11A FOR ROUNDING OF ROA
D	SEE STANDARD DRAWING S-PL-6 AND S-PL-6A FOR TYPICAL G
Ē	SEE STANDARD DRAWING S-CZ-1 FOR CLEAR ZONE CRITERIA. AASHTO, 2011, FOR FURTHER INFORMATION REGARDING CLEA
F	SEE STANDARD DRAWING RD11-S-11 FOR ROUNDING DETAILS
G	THE DESIRABLE LANE WIDTH IN INDUSTRIAL AREAS WITH HEAY
H	THESE TYPICAL SECTIONS WERE DEVELOPED FOR LOCAL ROA ROADS WITH DESIGN SPEEDS 45 MILES PER HOUR AND LOWE LEFT TURN LANE (CTWLTL) IS NEEDED ABOVE 45 MILES PER H WILL REFER TO THE PROPER RD11-TS-SERIES SHEET FOR TYP
I	URBAN ROADWAYS CROSS SECTIONAL ELEMENTS:
	REFER TO PAGES 5-13 THROUGH 5-16 FOR INFORMATION REG PARKING LANES, MEDIANS, CURBS, AND OTHER CROSS-SECTI REFER TO PAGES 6-13 THROUGH 6-16 FOR INFORMATION REG SHOULDERS, PARKING LANES, MEDIANS, CURBS, AND OTHER COLLECTOR ROADS.
L	URBAN ROADWAYS GENERAL DESIGN CONSIDERATIONS:
-	REFER TO PAGES 5-11 THROUGH 5-13 FOR INFORMATION REG GRADES, SUPERELEVATION, SIGHT DISTANCE, AND OTHER DE ROADS. REFER TO PAGES 6-11 THROUGH 6-13 FOR INFORMAT ALIGNMENT, GRADES, SUPERELEVATION, SIGHT DISTANCE, AN FOR COLLECTOR ROADS.

	GENERAL NOT
1	FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, RE OF GEOMETRIC DESIGN OF HIGHWAYS AND STREETS" AASHTO
2	PAGE NUMBERS REFERRED TO ON THIS DRAWING ARE FROM HIGHWAYS AND STREETS" AASHTO, 2011 (GREEN BOOK), UNLE
3	REFERENCE SHOULD ALSO BE MADE TO THE AASHTO "ROADS
4	MINIMUM RIGHT-OF-WAY IS THAT REQUIRED TO ACCOMMODA FEATURES (15 TO 20 FEET OUTSIDE THE SLOPE LINES IS DESI
5	THE DESIGN OF BRIDGES, CULVERTS, WALLS, TUNNELS AND O ACCORDANCE WITH PRINCIPALS OF AASHTO LRFD BRIDGE DE LOADING SHOULD BE THE HL-93 CALIBRATED LIVE LOAD DESIG FOR NEW AND REHABILITATED BRIDGES SHALL BE EQUAL TO ROADWAY, CURB-TO-CURB OR FULL SHOULDER WIDTH AS APP
6	FOR EXISTING BRIDGES TO REMAIN IN PLACE, THEY SHOULD F AT LEAST EQUAL TO THE WIDTH OF THE TRAVELED WAY PLUS BRIDGES SHOULD BE CONSIDERED FOR ULTIMATE WIDENING PROVIDE AT LEAST 3-FEET CLEARANCE ON EACH SIDE OR BE AS AN INTERIM MEASURE, ALL BRIDGES THAT ARE LESS THAN SPECIAL NARROW BRIDGE TREATMENTS SUCH AS SIGNING AM
7	THIS TYPICAL SECTION IS DESIGNED TO ACCOMMODATE AN A VEHICLES PER DAY, WHICH IS CONSIDERED TO BE THE TRAFF CONTINUOUS TWO-WAY LEFT TURN LANE (CTWLTL) FOR A 2-LA DESIGN FOR VOLUMES LESS THAN 5,000 VEHICLES PER DAY U STANDARD DRAWINGS RD11-TS-1, RD11-TS-2 AND RD11-TS-3.
8	WHEN ENCOUNTERING MAJOR INTERSECTIONS, DO NOT EXTE TURN LANE (CTWLTL) UP TO THE INTERSECTION. TERMINATE INTERSECTION TO ALLOW DEVELOPMENT OF AN EXCLUSIVE L MAY NOT WARRANT AN EXCLUSIVE LEFT-TURN LANE. SEE STR CURRENT EDITION OF THE "MANUAL ON UNIFORM TRAFFIC CO
9	ON WIDENING OF EXISTING TWO-LANE HIGHWAY TO THREE-LA BE REDUCED TO ZERO FEET AND THE ROADWAY LANE WIDTH FOLLOWING CONDITIONS:
	(9a) THE DESIGN ADT IS 20,000 VEHICLES PER DAY OR LESS.
	(9b) THE DESIGN SPEED IS 45 MILES PER HOUR OR LESS.
	9c THERE ARE RESTRICTED AND/OR LIMITED CLEARANCES EXISTING SOCIAL, ENVIRONMENTAL OR ECONOMIC CON
	(9d) WHEN SUFFICIENT NUMBERS OF ACCIDENTS AND/OR DE MID-BLOCK LEFT TURNS TO JUSTIFY A CONTINUOUS LEF TWO-LANE ROADWAY.

NT SHOULD NOT EXCEED AN ALGEBRAIC PE TABLES. ROUNDIN ON TOP OF CUT DE OF FILL SLOPE SPECIAL ROCK DADSIDE DITCH SLOPES. **SUARDRAIL PLACEMENT.** . SEE THE "ROADSIDE DESIGN GUIDE", EAR ZONE.

AVY TRUCK TRAFFIC IS 14 FEET.

DADS AND STREETS AND COLLECTOR ER. IF A CONTINUOUS TWO WAY WITH HOUR OR ON AN ARTERIAL, THE DESIGNER PICAL SECTION REQUIREMENTS.

GARDING WIDTH OF TRAVELED WAY, IONAL ELEMENTS FOR LOCAL ROADS. GARDING WIDTH OF TRAVELED WAY, CROSS-SECTIONAL ELEMENTS FOR

GARDING DESIGN SPEED, ALIGNMENT, ESIGN CONSIDERATIONS FOR LOCAL TION REGARDING DESIGN SPEED, ND OTHER DESIGN CONSIDERATIONS

TES

REFERENCE SHOULD BE MADE TO "A POLICY ITO, 2011 (GREEN BOOK).

I "A POLICY OF GEOMETRIC DESIGN OF ESS OTHERWISE NOTED.

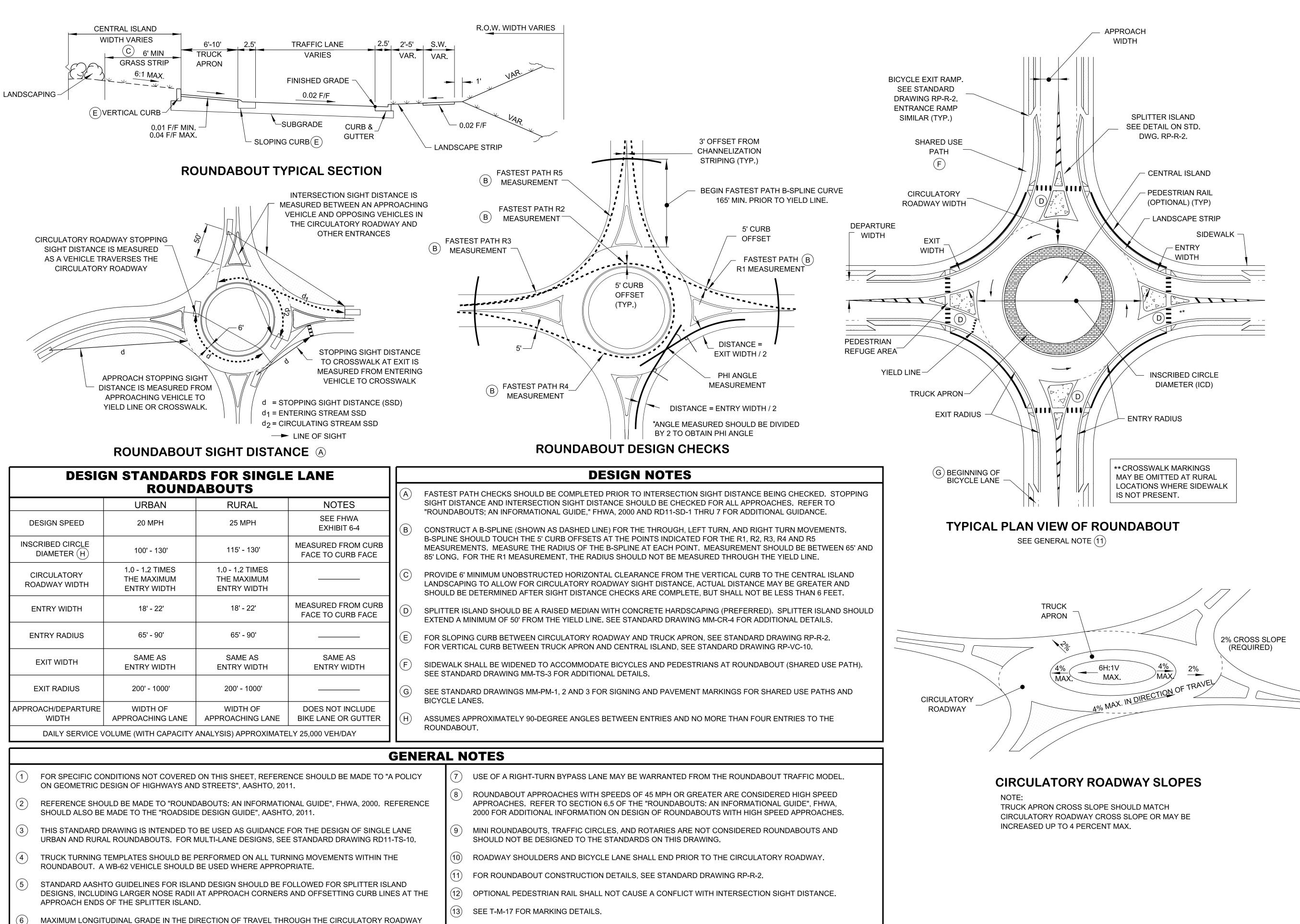
SIDE DESIGN GUIDE," AASHTO, 2011.

ATE SLOPES AND EROSION CONTROL SIRABLE IN RURAL AREAS).

OTHER STRUCTURES SHOULD BE IN ESIGN SPECIFICATIONS. THE DESIGN SIGNATION. THE MINIMUM CLEAR WIDTH THE FULL WIDTH OF THE APPROACH PPLICABLE.

HAVE ADEQUATE STRENGTH AND A WIDTH JS 2-FEET CLEARANCE ON EACH SIDE. OR REPLACEMENT IF THEY DO NOT HL-93 CALIBRATED LIVE LOAD CAPACITY. N FULL WIDTH SHOULD BE CONSIDERED FOR AND PAVEMENT MARKING.

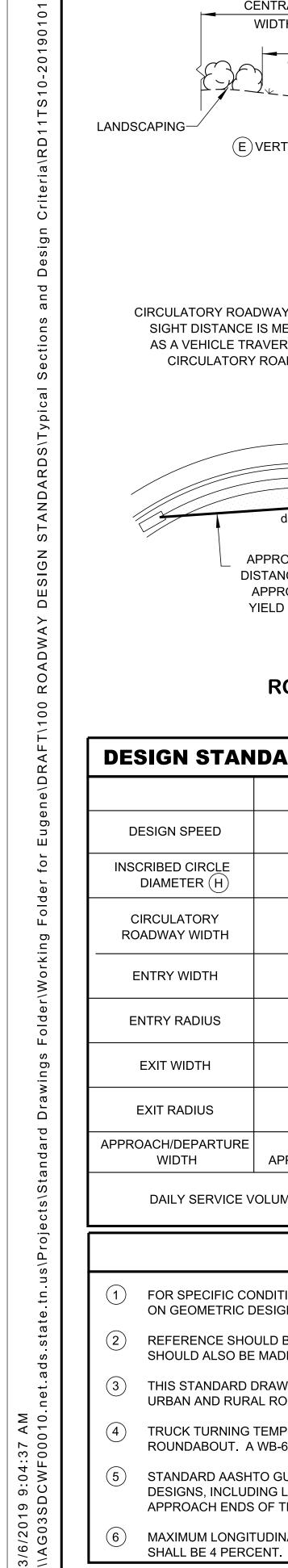
AVERAGE DAILY TRAFFIC OF 5,000 TO 12,500 FIC VOLUME NEEDED TO JUSTIFY THE LANE HIGHWAY. THE TYPICAL SECTION USES THE DESIGN STANDARDS SHOWN ON

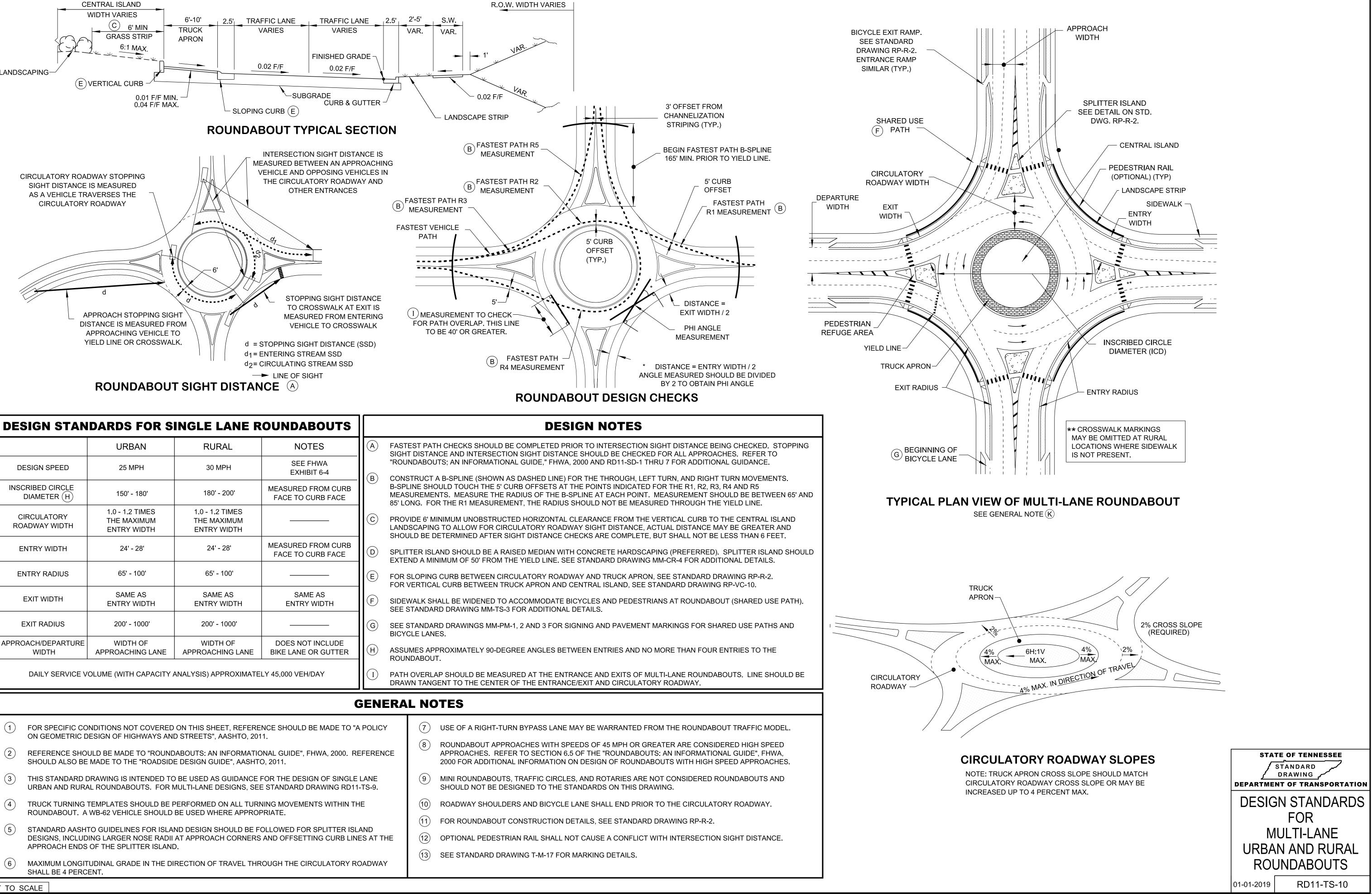

TEND THE CONTINUOUS TWO-WAY LEFT THE CTWLTL IN ADVANCE OF THE LEFT-TURN LANE. MINOR INTERSECTIONS TRIPING DETAILS SHOWN ON T-M-1 OR CONTROL DEVICES."

LANE HIGHWAY THE SHOULDER WIDTH MAY TH TO ELEVEN (11) FEET UNDER THE

S FOR RIGHT-OF-WAY DUE TO THE NDITIONS.

DELAYS IN TRAFFIC EXIST DUE TO EFT TURN LANE ON EXISTING




SHALL BE 4 PERCENT.

NOT TO SCALE

σ

		"ROUNDABOUTS; AN INFORMATI
CURB ACE	B	CONSTRUCT A B-SPLINE (SHOW B-SPLINE SHOULD TOUCH THE 5 MEASUREMENTS. MEASURE TH 85' LONG. FOR THE R1 MEASUR
	С	PROVIDE 6' MINIMUM UNOBSTRU LANDSCAPING TO ALLOW FOR C SHOULD BE DETERMINED AFTER
CURB ACE	D	SPLITTER ISLAND SHOULD BE A EXTEND A MINIMUM OF 50' FROM
	E	FOR SLOPING CURB BETWEEN OF FOR VERTICAL CURB BETWEEN
н	F	SIDEWALK SHALL BE WIDENED T SEE STANDARD DRAWING MM-T
	G	SEE STANDARD DRAWINGS MM- BICYCLE LANES.

)	ASSUMES APPROXIMATELY S
	ROUNDABOUT.

G	EN	ER	ΔL	NO	TES
9					ILJ

(1	FOR SPECIFIC CONDITIONS NOT COVERED ON THIS SHEET, REFERENCE SHOULD BE MADE TO "A POLICY ON GEOMETRIC DESIGN OF HIGHWAYS AND STREETS", AASHTO, 2011.	7	USE OF A RIGH
(2	REFERENCE SHOULD BE MADE TO "ROUNDABOUTS: AN INFORMATIONAL GUIDE", FHWA, 2000. REFERENCE SHOULD ALSO BE MADE TO THE "ROADSIDE DESIGN GUIDE", AASHTO, 2011.	8	ROUNDABOUT / APPROACHES. 2000 FOR ADDIT
(3	THIS STANDARD DRAWING IS INTENDED TO BE USED AS GUIDANCE FOR THE DESIGN OF SINGLE LANE URBAN AND RURAL ROUNDABOUTS. FOR MULTI-LANE DESIGNS, SEE STANDARD DRAWING RD11-TS-9.	9	MINI ROUNDABO SHOULD NOT B
(4	TRUCK TURNING TEMPLATES SHOULD BE PERFORMED ON ALL TURNING MOVEMENTS WITHIN THE ROUNDABOUT. A WB-62 VEHICLE SHOULD BE USED WHERE APPROPRIATE.		ROADWAY SHO
(5	STANDARD AASHTO GUIDELINES FOR ISLAND DESIGN SHOULD BE FOLLOWED FOR SPLITTER ISLAND DESIGNS, INCLUDING LARGER NOSE RADII AT APPROACH CORNERS AND OFFSETTING CURB LINES AT THE APPROACH ENDS OF THE SPLITTER ISLAND.	(11) (12)	FOR ROUNDAB
6	MAXIMUM LONGITUDINAL GRADE IN THE DIRECTION OF TRAVEL THROUGH THE CIRCULATORY ROADWAY SHALL BE 4 PERCENT.	(13)	SEE STANDARD

LLP