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The main objective of this research project centered on updating the equations currently used 

for estimating peak flows in urban watersheds of Tennessee and incorporating them into the 

StreamStats web application. The USGS was charged with the operational aspects of this goal, so 

the tasks assigned to the University of Memphis group mainly related to finding novel ways of 

accounting for non-stationarity in the hydrologic input (i.e., trends in extreme rainfall) and 

urbanization levels. These aspects involved broader research in hydrologic engineering, aimed at 

unraveling the concurrent effects of trends in both land development and increased extreme 

precipitation on urban peak flows, as well as possible sources of uncertainty or bias, when 

predicting rainfall Intensity (or Depth)-Duration-Frequency (IDF-DDF) values, as well as urban 

peak flows. 

 

The University of Memphis group structured their research around the following aspects: 

 

• An in-depth review of existing equations for peak flow estimation in the state of Tennessee, 

both for rural and urban basins, identifying issues and limitations of the approaches 

• A preliminary analysis of trends in the frequency of extreme rainfall events in Tennessee and 

the Southeastern U.S. 

• Formulating, testing, and benchmarking a novel watershed-scale, lumped urbanization 

index based on hydrologic connectivity, with the aim of increasing the explanatory power of 

regression equations for predicting peak discharges at ungauged basins 

• Studying the interactions between the spatial distribution of land-cover patches and that of 

rainfall, implicitly accounting for antecedent moisture conditions, via continuous simulation 

with data-driven, neural-network models 

• Using high-resolution precipitation data from Germany, to quantify the underestimation and 

uncertainty introduced by the use of NWS-COOP rainfall data totalized every 15-minutes, 

when deriving the currently used IDF-DDF values 

• A preliminary analysis of the potential biases and variability in estimations of extreme 

rainfall due to the low density of the weather station network in Tennessee 

• Analyzing how using annual maxima for flood frequency analyses underestimates frequent 

floods, as compared to choosing partial-duration (peaks-over-threshold) approaches 
 

Key Findings 

• Using rainfall data from 473 weather stations in the Southeastern U.S., of which 44 are in 

Tennessee, we performed a preliminary trend analysis of extreme rainfall frequency. 

Overall, we find that many more stations report significant increases in extreme storm 

frequency than decreases, and there is a spatial pattern to these trends: Most gauges with 

decreased frequency are located in Louisiana or Arkansas, while those reporting the most 

significant increases tend to be located throughout the other Southeastern states, but with 

increasing density moving inland. In Tennessee, we detect increasing or significantly 
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increasing trends in 23 to 45% of the stations, depending on duration, while we find a 

decreasing trend only for one single combination of station and duration. We conclude that 

these increasing trends in extreme rainfall frequency should be further studied, also 

incorporating rainfall magnitude, to improve our estimation of peak flows, but the lack of 

adequate precipitation data will require innovative approaches. 

• Based on a conceptualization of the main factors that influence the hydrologic (flooding) 

response of urbanizing watersheds, we propose a new urbanization index UI at the basin 

scale, based on considerations of hydrologic connectivity. UI can be used as an explanatory 

variable when deriving regression equations for urban peak flows. Using USGS study cases, 

we demonstrate that UI outperforms the percentage of impervious area IA as a variable for 

use in peak flow equations. The index is obtained in a GIS environment, requiring the raster 

maps for elevation, Curve Number, and land-use cover. We are currently testing this novel 

concept on a larger number of case-study basins, before publishing it. The USGS StreamStats 

team have manifested their interest in implementing our index as an explanatory variable 

into regression equations for estimating urban peak flows and other flood-related 

hydrologic variables, such as time of concentration. Using UI would reduce the uncertainty 

in the estimated floods and would allow for a continuous adjustment of the predictive 

equations as urbanization levels increase in a basin, directly tackling a main source of non-

stationarity. For future research and large-scale implementation, we have identified a range 

of ideas that could improve the predictive power of the urbanization index and reduce the 

computational effort necessary to map connectivity indices across vast territories. 

• Urbanization rates over the last 20 years were computed for all watersheds in major 

metropolitan areas in Tennessee; all basins have experienced urban expansion, but there is 

a large range of variability. 

• For four watersheds in Northern Georgia, with flow data from USGS gauging stations and 

gridded, 1-hour, gauge-corrected radar products from the NWS, we used a data-driven, 

neural-network model to demonstrate that it is possible to study the effects of changes in 

land-cover, net of any precipitation trends. This is relevant for TDOT, as it allows dealing with 

the flow regime attribution issue in future regional models for peak-flow equations. 

• Using 13 years of rainfall data with 1-minute resolution at 862 German weather stations, we 

document the large variability in the negative biases introduced in IDF-DDF estimations, due 

to the use of totalized data such as those from the 15-minute-resolution NWS-COOP 

network. These findings raise difficult but serious questions regarding the uncertainties and 

biases in our current estimates of IDF-DDF values in the U.S. in general, and Tennessee in 

particular, for the short durations of interest in urban hydrology. Furthermore, emulating as 

much as possible the methods in Atlas 14, we attempted a preliminary effort to understand 

potential effects due to the low density of rain gauges, by using the same German data. We 

find that low weather-station densities, similar to those in Tennessee, result in more cases 

of underestimation than positive bias, and noticeably increase the variability in IDF-DDF 

values. These findings are highly relevant for TDOT and other agencies that require accurate 

estimates of extreme rainfall. 

• Based on a rigorous analysis of more than four hundred basins across the U.S., with 

minimum human impact, we systematically describe the underestimation of frequent floods 
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when performing flood frequency analyses with annual maxima instead of peaks-over-

threshold (partial duration) approaches, which are conceptually more appropriate. We 

observe that the underestimation for return periods equal to or less than 5 years can be 

severe (reaching 50% or more) at some locations, depending mostly on climate. We provide 

a theoretical framework for analyzing what drives this issue, as well as correcting biased 

estimates obtained with annual maxima This methodology can benefit a variety of scientific 

and applied disciplines, such as fluvial geomorphology and river restoration, that need 

accurate predictions of frequent floods. As the use of annual maxima is the most established 

technique for flood frequency analysis, given its advantages compared to peaks-over-

threshold analyses, we suggest that our methodology should be incorporated in the national 

guidelines for flood frequency analysis. 

 

Key Recommendations 

• Further pursue the development of the urbanization index UI, also including the effects of 

drainage infrastructure on hydrologic connectivity. The current UI proposed in this report 

only considers surface hydrologic connectivity, driven by relief and the nature of surface 

patches (their slope, roughness, infiltrability, etc.), but most urbanized and urbanizing areas 

contain stormwater sewerage systems, with their own, separate effects on hydrologic 

connectivity. Including information on both types of connectivity should enhance the 

explanatory power of UI in peak flow equations for urbanizing areas, further reducing 

estimation uncertainty. 

• Simultaneously increase the number of gauged basins as well as the density of rain gauges 

across urban areas of Tennessee. The design for such enhanced hydrometeorological 

monitoring networks (sometimes known as “mesonets”) should consider a more distributed 

coverage across the different urban areas of the state, as well as a wider range of watershed 

characteristics. Rain gauging equipment for the monitored watersheds should be state-of-

the-art, with 1-minute resolution, and a spatial density that ensures coverage of extreme, 

small-scale convective events (i.e., thunderstorms). This would benefit TDOT by allowing for 

future development of locally tailored peak flow equations, better estimation of IDF-DDF 

values, and improvements in methods for engineering design, that would increase urban 

resilience to extreme hydrometeorological events. 

• Perform further, more detailed studies of: (i) how totalized, 15-min data underestimate 

actual maxima in the U.S., (ii) what uncertainty or bias is introduced due to the current, low 

density of weather stations, (iii) trends in both frequency and magnitude of extreme 

precipitation, and (iv) how the development of novel, event-based rainfall analysis 

techniques can help extract more information from the sparse, short precipitation records 

available in Tennessee. Collectively, results from these studies would allow for updating IDF-

DDF values in Tennessee, so that the present, higher values of rainfall are reflected in 

engineering designs. In this respect, it should be noted that there is increasing evidence, 

including results from this research, that the currently accepted extreme rainfall values for 

design, from NOAA’s Atlas 14, are underestimated. 

• Convey to practitioners that commonly performed flood frequency analyses based on 

annual maxima can severely underestimate frequent floods (say, those with return period ≤ 
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5 years), and thus should not be used in engineering applications requiring such estimates, 

like the determination of bankfull floods or river restoration projects. This would ensure that 

designs are not based on biased estimations, which increases their risk of failure. 

• Pursue the study of machine learning models for explaining the hydrologic effects of 

urbanization, disentangling trends in land cover from those in precipitation. We think that 

this is the next frontier for meaningful improvement in hydrologic estimates needed for 

design.  
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Chapter 1 
To design infrastructure such as bridges, culverts, 

and levees, for management and zoning purposes, 

for emergency response, to understand channel 

instability and other environmental impacts, and to 

design river restoration projects, civil engineers need 

to predict the magnitude of floods for a range of 

return periods at ungauged locations along ditches, 

creeks, and streams. Typically, the methods used for 

estimating flood frequency are regional, transposing 

information from gauged to ungauged watersheds 

under the assumptions of stationarity and hydrologic 

homogeneity (i.e., the hydrologic response does not 

change in time, and it is similar across basins, 

respectively). The issue in cities, where the risk to 

lives and property is higher, is that the hydrologic 

response of urban watersheds can change in time due to the simultaneous effects of urbanizing 

trends, changes in extreme precipitation, or the development of stormwater control measures. 

This work focuses on updating the equations used for predicting peak flows in urban basins of 

Tennessee, accounting for non-stationarity in the hydrologic input (i.e., trends in extreme rainfall) 

and urbanization levels. It also involves broader investigations in hydrologic engineering, aimed 

at unraveling the concurrent effects on urban peak flows due to trends in both land development 

and extreme precipitation, as well as possible sources of bias or uncertainty when predicting 

Intensity (or Depth)-Duration-Frequency values and urban peak flows. 

In the remainder of this introductory chapter, we present the global and local contexts for this 

research and then introduce its general objectives, before describing the ten different tasks that 

must be completed to achieve them. The subsequent chapters include the literature review, the 

methodology, the results, and the conclusions from the work performed. 

1.1 General and local context 

Traditionally, engineers have used regional equations to estimate peak flows at ungauged 

locations. These are derived by computing flood quantiles from flood frequency analyses at 

gauged sites, and then regressing them on a range of lumped basin descriptors, such as 

drainage area or percentage of impervious area, among others. In theory, the gauged basins 

used to derive the equations as well as the ungauged basins in which they are then applied 

should be “hydrologically similar.” Because this is not easy to assess, regional equations are 

typically created for administrative regions, instead of hydrologically homogeneous regions. 

This is the common case when deriving peak flow equations for urban areas, as it is assumed 

that the higher levels of urbanization result in watersheds that are more similar hydrologically, 

independently of the actual physiographic (geology, soils, relief, etc.) and climatic contexts. 

In Tennessee, the overall problem of urban flood estimation involves varied aspects:  

The issue in cities, where the 

risk to lives and property is 

higher, is that the hydrologic 

response of urban 

watersheds can change in 

time due to the simultaneous 

effects of urbanizing trends, 

changes in extreme 

precipitation, or the 

development of stormwater 

control measures. 
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a. Previous work on the topic is aged (> 40 yrs.), was derived from data for basins that were 

still undergoing urbanization and did not include watersheds with intense development. 

b. Current equations were derived for a small number of gauges with very short flow records 

(< 8 yrs.), so they are based on synthetic (model-generated) floods, instead of actual data. 

c. Existing equations do not consider the possibility of non-stationarity in either land use or 

rainfall extremes, nor do they include any variables reflecting these urban-flood drivers. 

d. As a result, the equations presently in use may not represent the current flood regime 

adequately; moreover, their predictive uncertainty is probably large. 

e. Few cities in or around Tennessee have gauged urban watersheds, and those that do (e.g., 

Nashville and Huntsville, AL) are located within only three of the five main physiographic 

zones in the state. Additionally, all gauged urban basins are highly clustered in space, so 

that their spatial distribution does not fully represent the expected range of variability. 

f. The effects of urbanization trends must be disentangled from any potential future 

changes in extreme precipitation, so that predictive equations can explicitly incorporate 

both these drivers as separate variables. 

In 2017, responding to this conundrum, TDOT issued Research Needs Statement Number 25: 

“Peak Flow Estimation in Urban Drainage Areas,” with the goal of updating equations for peak 

flow equations in Tennessee. This request for proposals stated that “TDOT uses equations 

developed by the United States Geological Survey (USGS) to estimate peak flows through all 

structures with a drainage area greater than approximately 500 acres (0.78 sq.mi.). Equations 

for urban areas have not been updated since 1984 and do not take advantage of updates in 

estimation techniques and an additional 30 years of observed flow data to increase accuracy. 

Tennessee is currently experiencing exponential urban growth and updating the equations will 

provide more accurate peak flows resulting in more accurate drainage structure design.” In 

turn, the stated goal for the research was to “update the peak flow estimation equations for 

urban drainage basins in Tennessee, implement them in the StreamStats computer program 

currently used and enhance StreamStats to provide parameters used in urban equations.” 

This research offers innovative approaches to better understand the hydrologic response of 

urbanizing watersheds, supporting improved predictive equations for urban peak flows in a 

context of limited information, both in time (short records) and space (few, clustered stations).  

It should be noted that the proposal that was selected originally considered a single award to 

the UofM with a sub-award to the USGS. Because of this, tasks, deliverables, and milestones 

were all written to reflect a joint UofM-USGS project, so that some of them were collaborative, 

while others needed to be performed by UofM for the USGS. In the end though, the work was 

clearly split between the USGS and UofM, with no direct feedback or overlap, and two separate 

grants were awarded. Because of this, the main goals and scope of work for the two research 

groups are different, while some of the original subtasks and deliverables became moot.  

UofM was tasked with more general research in hydrologic engineering, aimed at better 

predicting rainfall-runoff patterns in urbanizing watersheds, including non-stationary effects 

and uncertainties or biases in estimation.  
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Thus, UofM’s proposal initially included aspects such as (i) developing new indices of 

urbanization that consider hydrologic connectivity, so as to improve the explanatory power of 

regression-based peak flow equations, (ii) reflecting the effects of urbanization trends on 

hydrologic response, by considering event-based analyses, (iii) analyzing whether there are 

recent trends in extreme precipitation in Tennessee and surrounding states, and (iv) getting a 

preliminary notion of possible sources of uncertainty and potential biases in the estimation of 

both extreme rainfall and urban floods in Tennessee. 

In turn, the USGS was tasked with deriving updated equations for peak flows and incorporating 

them into the StreamStats web application, which involves compiling streamflow data for urban 

areas, determining flood quantiles at these gauged locations, computing a range of potential 

basin descriptors to be used as explanatory variables, and finally performing the multiple 

regressions to obtain the updated equations, before implementing them in StreamStats.  

1.2 Objective of the research 

This project’s specific objective is to develop improved sets of equations for estimating peak 

flows in urban areas of Tennessee and neighboring states, and then implement them into the 

StreamStats web application, ensuring that the program can automatically compute the 

different parameters and variables included in the equations. 

As mentioned above, UofM’s tasks consider broader objectives related to improving our 

understanding of the hydrologic response in urbanizing basins, dealing with non-stationary 

behavior (trends) in the rainfall and the system’s urbanization levels, and discerning potential 

sources of uncertainty or biases in the estimation of extreme rainfall and floods in Tennessee. 

1.3 Tasks to achieve the objective 

The proposal considered the ten following tasks, split between the USGS and UofM as indicated 

in each case. Please note that Task 6 was originally a joint USGS-UofM task, but ended up being 

performed solely by the USGS, using traditional basin descriptors, after the project was split 

into separate awards. Nonetheless, we are actively conversing with the StreamStats team at 

the USGS, due to their interest in including the new urbanization index UI into StreamStats. 

Task 1 - USGS: Compile and analyze available flow and stage data for urban areas in Tennessee 

and surrounding urban areas of neighboring states in order to understand the spatial 

coverage and record lengths of streamflow data, assess the ranges of variability for the 

different watershed characteristics (area, slope, etc.), and determine flood magnitudes for 

annual exceedance probabilities (AEPs) at stream gauge locations using methods described 

in the Subcommittee on Hydrology of the Advisory Committee on Water Information’s 

Guidelines for Determining Flood Flow Frequency Bulletin 17C (England et al., 2019).  

Task 2 - UofM: Review existing peak flow equations for both rural-unregulated and urban 

watersheds in Tennessee and immediately surrounding areas of neighboring states. 

Document the variability in physiographic factors (geology, soils) across cities in the state. 

This will help in determining candidate watershed (and climate) characteristics to potentially 

include in the analyses to develop the prediction equations, and in defining homogeneous 

“regions” (groups of cities, in this case) for equation development and range of applicability. 
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Task 3 - UofM: Obtain all continuously recorded point rainfall data at and near urban areas in 

Tennessee and analyze the records to detect jumps or trends in extreme precipitation for 

the range of durations relevant to the watershed sizes considered in this proposal (1 to 100 

mi2). These precipitation records, in conjunction with rainfall radar data, will also help in 

determining water inputs for the analysis of specific rainfall-runoff events. 

Task 4 - UofM: Utilize existing land cover datasets (e.g., National Land Cover Database; Homer 

et al., 2015) to assess urban and urbanizing watersheds, in order to reflect the non-

stationary nature of urban environments and the impact that this has on total impervious 

area, hydrologic connectivity, and resulting runoff rates. Determine applicable ways of 

better incorporating indices of urbanization as variables in the predictive equations (e.g., 

total vs. effective vs. directly connected impervious areas). 

Task 5 - UofM: Perform event-based rainfall-runoff analyses for all flow events above a certain 

threshold (locations with streamflow data), or all rainfall events above a certain threshold 

(locations with only stage data), in order to understand the effects of antecedent conditions 

and time-varying urbanization levels on hydrologic response (i.e., on lag times and/or peak 

flows). 

Task 6 - USGS: Based on results from all previous tasks, determine homogeneous groups of 

urban areas, and select the basin characteristics and rainfall event variables to be included 

in the peak flow estimation equations. 

Task 7 - USGS: Calculate potential basin characteristics (explanatory variables) using GIS 

techniques for improved accuracy and consistency over those used in previous urban peak-

flow studies in Tennessee and to ensure that the basin characteristics can be used in 

StreamStats. 

Task 8 - USGS: Using statistically significant basin characteristics and flood-frequency estimates 

at gauged locations, regression equations will be developed using generalized or weighted 

least squares methods to estimate flood magnitudes for selected annual exceedance 

probabilities.  

Task 9 - USGS and UofM:  Deliver final report summarizing the findings of the study. 

Task 10 - USGS: Develop an urban basin flood-frequency decision support tool for TDOT staff, 

comprising a final report and incorporation of the updated regression equations into the 

StreamStats web application. 
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Chapter 2 
Besides a general outlook to urbanization effects on hydrologic response, this chapter provides 

background about previous research on the UofM-assigned Tasks (2 to 5). We discuss existing 

peak flow equations for both rural and urban streams in Tennessee, and their limitations. We then 

review the state of the knowledge about rainfall trends in TN and the U.S. Southeast in general, 

for sub-daily durations that are of interest when designing stormwater or hydraulic infrastructure 

for urban basins under 100 sq.mi. Next, we cover the previous attempts at developing hydrologic 

connectivity indices, to better describe the rainfall-runoff response in urbanizing watersheds, 

before discussing potential approaches to represent the highly complex, interacting effects of 

land-cover changes and rainfall-runoff response. Finally, we briefly discuss a range of possible 

sources that introduce uncertainty or bias in our estimates of extreme rainfall as well as floods. 

2.1 Hydrologic response of urbanizing watersheds 

It has been recognized since at least the 1960s that land development has strong effects on the 

hydrologic response of urban basins (Leopold, 1968; Hollis, 1975; Konrad 2003). Typically, runoff 

volume and peak flow rates increase, lag times are reduced, discharge decreases during low-flow 

periods (baseflows), and flood hydrographs become peakier, as compared to pre-development 

conditions (Konrad 2003; Sillanpää & Koivasulo, 2015). Recent studies on urbanization impacts 

to flood hydrology include Shuster et al. (2005), Schueler et al. (2009), and Jacobson (2011). 

Any Engineering Hydrology textbook (e.g., Viessman & Lewis, 1995) explains that the variation 

in rainfall floods in rural, unregulated streams within a physiographically homogeneous area is 

explained primarily by basin area and rainfall, modulated by antecedent conditions. Secondary 

variables include basin shape (indexed by various shape factors, or else through a combination 

of basin length with area) and either basin or channel slope. These are, for example, the typical 

watershed variables included in regression equations for synthetic unit hydrographs, the most 

common engineering tool for flood prediction in ungauged basins (see, e.g., Chapters 9 & 10 in 

Gupta, 2017). In contrast, other variables can become more relevant in urban and urbanizing 

watersheds, such as impervious area (amount and spatial distribution), its location with respect 

to the basin’s outlet, the degree of connectivity between impervious areas and streams and 

between impervious and pervious patches, and the presence of drainage infrastructure.  

Impervious area (IA) is typically included as an explanatory variable in predictive equations, as 

percentage of the total basin area. But some authors (Roy and Shuster, 2009; Jacobson, 2011) 

suggest that effective impervious area (EIA), that portion of IA that is hydraulically connected to 

the stream network by the drainage system, better explains urbanization effects on peak flows. 

Following Ebrahimian et al. (2016), this occurs when surface runoff generated over impervious 

areas flows over paved surfaces, through pipes, or in any other type of structure that does not 

reduce runoff volume. Ebrahimian et al. (2016) emphasizes the difference between EIA and a 

similar concept: directly connected impervious area (DCIA); while both are attempts at indexing 

that part of impervious area that contributes runoff to the stream network through stormwater 

infrastructure, DCIA is obtained from the characteristics of the basin surface and its drainage 

system (Seo et al. 2013), while EIA is derived from retrospective analyses of rainfall-runoff 

events.  
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Assuming that the basin’s portions that actively contribute to its response grow in extent when 

considering increasing rainfall events, DCIA should be the area that contributes first, for small 

events, followed by the indirectly connected IA and then the pervious patches, which add their 

contributions for increasingly intense rainfall events, respectively (Boyd et al. 1993). 

Determining EIA is difficult, because it depends on rainfall intensity, which changes in space 

and time. On the other hand, DCIA can be defined if high-resolution spatial information is 

available, or else through field visits. Epps and Hathaway (2018) quantify EIA for three urban 

watersheds in Knoxville, TN, with methods that are not applicable at the scale of this project. 

Sytsma et al. (2020) highlight the importance of the drainage network and the effects of 

antecedent soil moisture (ASM) conditions of pervious patches in affecting the hydraulic 

connectivity of impervious areas. This implies that the ways in which impervious areas 

exchange water with pervious patches and with each other should be regarded as a dynamic 

property, depending on past rainfall amounts. Sytsma et al. (2020) quantify such effects by 

defining the so-called hydrologically connected impervious areas (HCIA). However, this 

methodology is also impracticable in the framework of this project, due to issues in accessing 

information on the stormwater network for large portions of territory.  

Regardless of whether imperviousness is better represented by IA, EIA, DCIA, or HCIA, multiple 

authors show that its spatial distribution, interacting with the spatio-temporal variability of 

rainfall, affect the flood response of urban basins (Mejía and Moglen, 2010a and 2010b; Yang 

et al., 2011; Yao et al., 2016; Miller and Brewer, 2018). It should be noted though that Bell et al. 

(2016) found IA to be the best predictor of peak flow, stating that even though “there is a strong 

theoretical basis for EIA as a predictor of urban hydrologic response, and numerous modeling 

[…] studies have demonstrated the importance of including connectivity […] no empirical 

studies known to the authors have actually demonstrated the predictive power of EIA.” 

The flow regime attribution problem 
Urbanizing watersheds are non-stationary by definition; we also know that extreme rainfall 

events are increasing in the U.S. over a range of durations (e.g., Douglas and Fairbanks, 2011, 

for the Northeast; Pryor et al., 2009, for the Central Plains and northwestern Midwest), which 

also introduces non-stationarity. For these reasons, when attempting to predict peak flows for 

urbanizing basins under changing climatic conditions, it would be helpful to first disentangle 

the effects of these different factors, what Jovanovic et al. (2018) term the “flow regime 

attribution problem;” in our case, we are specifically interested in “flood regime attribution.” 

As done by Miller et al. (2014) and Sillanpää and Koivasulo (2015), this would require 

documenting the historic changes in land use across a study watershed and attempting to 

correlate them to hydrologic change. In a similar context to this project – estimating peak flow 

quantiles in heavily urbanized Northeastern Illinois basins, Over et al. (2017) proposed two 

different methods to explicitly incorporate changing urbanization rates. Application of these 

methods to Tennessee may be difficult due to a relative lack of streamflow data, though; Over 

et al. (2017) had access to much longer streamflow records with a more uniform geographic 

coverage and a larger number of gauging station (117 stations). 

A third potential source of trends in hydrologic response is the introduction of stormwater 

control measures. Even though Bell et al. (2016) found no influence on peak flows, Smith et al. 

(2013) concluded that differences in hydrologic response among urban basins are indeed 
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linked to drainage infrastructure, stating that “detention basins in these watersheds appear to 

operate as intended by stormwater legislation to lower peak discharges but not runoff 

volumes.” Smith et al. (2013) work was performed in Baltimore though, where there is a much 

higher penetration of stormwater control measures than in Tennessee. For this reason, we do 

not further consider this possible source of non-stationarity in what follows. 

Dealing with the lack of long-duration records 
Predictive equations for peak flows are derived by applying regression techniques to long flow 

records at multiple gauges. This purely statistical way of relating floods to different explanatory 

variables works well when there is a large sample of basins and when the different watershed 

descriptors included in the equations (such as area, slope, IA, etc.) adequately cover the range 

of variability, with little collinearity. We posit that in the case of Tennessee, there is not a 

sufficiently large number of urban gauging stations with sufficiently long records to sustain this 

approach beyond a preliminary level, so that alternatives are needed.  

One such alternatives is using partial duration (also known as peaks-over-threshold or POT) 

methods for performing flood frequency analyses. This has not been commonly used in the 

context of peak flow estimation (but consider Soong et al., 2004), even though it is a good way 

of increasing sample size without incorporating potentially influential low floods (PILFs), as 

frequently happens in annual maxima analyses (Cohn et al. 2013). Keeping PILFs would 

introduce heterogeneity in the flood population, violating a basic assumption of frequency 

analysis. On the other hand, partial-duration analyses only consider the larger events from the 

beginning, so that if the threshold is chosen correctly, the need for low-outlier analyses, such 

as Grubbs-Beck type tests (Grubbs and Beck, 1972; England et al., 2019) is precluded.  

Another way of increasing sample size when dealing with short records is by performing event-

based analyses, seeking to relate different characteristics of the response of individual floods 

(peak flow, lag time, duration above a certain discharge, etc.) to rainfall characteristics as well 

as antecedent conditions. This approach was used by Boning (1976) in Shelby County, 

Tennessee, albeit with very limited data (2 years in the best cases), as well as by Kermadi et al. 

(2012), Braud et al. (2013), and Sillanpää and Koivasulo (2015). Whereas 10 annual peak flows 

are insufficient to estimate flood quantiles adequately, the 10 yr-long record could contain on 

the order of fifty large storm-flood events. Analyzed in conjunction with antecedent conditions 

and storm characteristics, such a larger sample size can yield valuable information about the 

response of urbanizing watersheds that would not be contained in only 10 annual maxima. 

2.1 Existing peak flow equations for Tennessee 

As mandated in Task 2, we review the peak flow equations currently used in Tennessee, 

discussing their limitations, as well as flow-data issues related to the short record durations, 

the scarcity and clustering of urban gauging stations, and the lack of consistent data. We first 

review equations for rural streams and rivers, before focusing on the urban case. Because this 

research focuses on estimating discharges, we do not include past literature on the estimation 

of flood depths in Tennessee (e.g., Gamble and Lewis 1977; Gamble 1983), beyond noting that 

they derived their equations exclusively from depth data measured at gauging stations.  
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This probably gives a biased view of the possible flood depths at cross-sections far from 

measurement transects, as the locations for gauging are not randomly selected along streams, 

but typically focus on bridge and narrow crossings, for operational reasons. 

Peak flow equations for rural streams 
Over the last 65 years, seven studies have been published on the magnitude of floods in rural, 

unregulated streams of Tennessee and nearby areas, by Jenkins (1960), Patterson (1964; this is 

a graphical method, so it is not mentioned further), Speer & Gamble (1964), Randolph & Gamble 

(1976), Weaver & Gamble (1993), Law & Tasker (2003), and Yan (2012). Given that the present 

work focuses on urban and urbanizing watersheds, it is out of scope to compare these 

approaches in detail; moreover, all this literature is already summarized meticulously in Yan 

(2012). Summing up these studies for rural watersheds in Tennessee, we can state that: 

a. They are all based on hundreds of gauging stations, from a low of 216 stations in Speer and 

Gamble (1964), who focused on the Cumberland and Tennessee basins, to a high of 453 

gauges in Law & Tasker (2003), who considered all of TN and its adjacent states. 

b. Only rural or “lightly developed” basins were used, even though the latter is defined in 

different ways, all the way from “no more than 10% urban land use” (Yan, 2012) to “up to 

about 30 percent total impervious area” (Law and Tasker, 2003). It should be clear that a 

basin with 30% of IA cannot be classified as rural or “lightly developed.” 

c. Most consider gauges with 10 years of data or more, a very small sample size for estimating 

any flood quantile beyond a return period of 10 years, so that uncertainties must be large. 

d. They split their coverage area in a number of hydrologically homogeneous regions (HHRs), 

ranging from a maximum of 27 zones (Patterson, 1964) to a minimum of four, which is the 

case for all recent (since 1976) reports. These four regions roughly correspond, with some 

slight differences, to: HHR4 - western Tennessee (Mississippi Alluvial Plain and East Gulf 

Coastal Plain physiographic provinces), HHR2 - the Highland Rim of central Tennessee, HHR3 

- the Nashville Basin physiographic province, and HHR-1 eastern Tennessee (Cumberland 

Plateau, Cumberland Mountain, Southern, and Tennessee physiographic provinces).  

e. The range in basin areas is huge, covering from about 100 acres to many thousands of 

square miles, clearly crossing the thresholds for the dependence of extreme floods on 

different precipitation mechanisms, from single-cell convective events to organized 

convection to synoptic rainfall. Moreover, results for watersheds larger than about 100 

sq.mi. are probably irrelevant for the research at hand, which focuses on urban basins. 

f. Most of the predictive equations depend exclusively on a single variable, watershed 

drainage area, except for the following two exceptions: 

i. For one of their HHRs, Law and Tasker (2003) propose equations where peak flows are 

a function of drainage area, main-channel slope (albeit to a very low exponent ranging 

from 0.112 to 0.117, so that results are highly insensitive to it), and a climate factor (with 

an extremely large, highly variable exponent ranging between 2.904 and 4.581, which 

makes one question how sensitive results are to variability in this factor). In the other 

three HHRs, their equations are functions of drainage area and main-channel slope, the 

latter with an exponent which is again very low, ranging from 0.054 to 0.160. 

ii. Yan (2012) derived equations based on a combination of the following variables: 
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drainage area, mean slope, shape factor, mean basin elevation, and mean annual rain. 

For some HHRs and return periods, his equations incorporate all five independent 

variables together. Although he checked for correlations between the explanatory 

variables, the statistical criterion was probably too liberal; this might explain the 

incorporation of both mean basin elevation and mean annual precipitation – which 

should be correlated - in some of his equations. Beyond this, it is not clear why one 

would use mean annual precipitation to explain extreme floods, given the availability of 

IDF-DDF values over the area of interest. It should be noted that some of Yan’s (2012) 

equations for HHR 3 have a higher exponent for the shape factor than for the drainage 

area, which is atypical and clearly unexpected, raising questions about his procedures. 
 

In all these equations, basin drainage area is (almost) always the variable with the highest 

explanatory power, so it is important to analyze the variability in its scaling exponent, which we 

will call a. Jenkins (1960) proposed a value of 0.77 for a, in all regions, while Speer and Gamble 

(1964) consider an exponent of 0.793. Randolph & Gamble (1976) suggested that a ranges from 

0.709 to 0.752 in HHRs 1 to 3, while it is lower, between 0.515 and 0.575 for their HHR 4, which 

corresponds to western Tennessee (roughly, west of the Tennessee River). Rather similarly, 

Weaver & Gamble (1993) advance values between 0.666 and 0.753 for HHRs 1 to 3, and between 

0.523 and 0.612 for HHR 4, while Yan (2012) finds that a ranges from 0.64 to 0.77, and from 

0.52 to 0.55, for the same respective HHRs. The only deviation from this rather consistent 

behavior for a is found in Law and Tasker (2003), who propose higher values, in the range 0.742 

to 0.815, for HHRs 1 and 2, as well as for smaller (< 30 sq.mi.) watersheds in HHR 3, while finding 

that 0.527 ≤ a ≤ 0.587 for HHR 4 and larger (30 to 2000 sq.mi.) basins within HHR 3. 

All recent studies concur in that small (order of magnitude O.M.~ 1 sq.mi.) rural basins of 

western Tennessee (HHR 4) produce the largest flood discharges per unit area (specific flow) in 

the state, most probably reflecting a combination of more impervious soils and higher rainfall 

intensities, for those shorter durations related to the expected response times of such small 

basins (say, from 30 minutes to 1 or 2 hours). Indeed, spatial plots of the 10-yr or 25-yr DDF 

values for such durations display the steepest increasing gradients moving from eastern 

Tennessee to southwestern Tennessee. For these smaller basins, the largest peak flows in 

HHR4 are followed closely by HHR3, corresponding to the Nashville Basin. When scaling up to 

larger basins though, O.M. ~ 10 to 100 sq.mi., floods in western Tennessee increase much less 

than in other regions, as reflected by the significantly lower values of the scaling exponent a, 

as discussed before. This is probably due to the much flatter relief in this part of Tennessee, 

which should result in longer travel times and stronger diffusion effects on the flood 

hydrographs from larger basins. For larger watersheds, the highest specific flood discharges in 

Tennessee occur in HHR3, followed by HHR2, and then by HHR4. Peak floods (expressed as 

specific discharges, i.e., flows per unit area) in HHR1 are smaller, across all basin sizes. 

Peak flow equations for urban areas 
The only statewide study with equations for peak flows in small urban streams of Tennessee is 

that of Robbins (1984), who used data from 22 basins with areas ranging from 0.21 to 24.3 

sq.mi., located in cities with populations between 5000 and 100,000 inhabitants, with IA ranging 

from 4.7 to 74.0 % of the drainage area. These gauges were established specifically for the 

purposes of the study, and thus had a clear focus towards smaller urban basins.  
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Because the records used in the analysis were all very short, between 4 and 8 years, frequency 

analyses could not be performed on gauged annual peak flows. Instead, the observed flow data 

together with measured precipitation at co-located rain gauges were used to calibrate rainfall-

runoff models for each basin, which were in turn used to derive synthetic flood-frequency 

estimates. The simulation models required gauge-measured rainfall and pan evaporation, but 

there were only four evaporation stations across the whole state, sometimes located very far 

from the site of interest. The use of synthetic data evidently increases the estimation 

uncertainty.  

Robbins (1984) included nine basin descriptors in his analysis: drainage area, main-channel 

slope, main-channel length, the 2-year/24-hr rainfall, a “basin development factor” (accounting 

for storm sewers, channel “improvements” and revetments, and curbs and gutters on streets), 

the % of IA, the basin’s lag time, the mean annual rainfall, and the peak discharge for rural 

conditions (from Randolph & Gamble’s (1976) equations). His equations for urban peak flow 

depend only on three of these characteristics: watershed area to an exponent a of 0.74 or 0.75, 

IA to a power of 0.39 to 0.48, and the 24-h rain for T= 2 yrs, with widely varying exponents that 

decrease from a high of 3.01 (for T = 2 yrs) to a low of 1.10 (for T = 100 yrs). Because of these 

large exponents, the resulting peak flows are highly sensitive to the 2-yr/24-hr rain, even though 

this variable does not display much variability at all across Tennessee. This is unfortunate, 

because in physical terms, one should not expect the response of such small basins, which 

should be driven by extreme convective events, to be directly related to the rain over 24 hours, 

which depends on stratiform (i.e., frontal) events. Here, the 2-yr/24-hr rain acts as an index for 

the actual rainfall over shorter times, which would cause such small basins to flood. Even though 

the 2-yr/24-hr rainfall also displays a general increase when going from NE to SW Tennessee, 

its spatial behavior is quite different from that exhibited by rainfall over shorter durations. 

For Nashville-Davidson Co., Robbins (1984) refers to Wibben (1976), who analyzed 14 basins 

with surface areas between 1.58 and 64.0 sq.mi. and IA between 3 and 37%, concluding that “in 

a fully developed residential area, the flood peaks and the basin lag times will not be significantly 

different from those expected from an undeveloped area.” For predicting urban peak flows in 

Nashville-Davidson Co., Wibben (1976) thus recommended using Randolph & Gamble’s (1976) 

equations for rural basins. He did warn that “data were not sufficient to determine if an increase 

in flood peaks would occur from extremely small basins with extremely intensive development.” Like 

Robbins (1984), Wibben’s (1976) study is based on synthetic flood data. 

Crucially, Robbins (1984) analyzed in greater detail five of his basins, using two different 

methods. In all but one, urban floods derived with both techniques were quite larger than those 

predicted using rural equations; he explained the single case in which the rural values exceeded 

the urban ones (Pistol Creek at Alcoa, TN), by stating that it “is probably due to the location of the 

urban development within the basin.” Thus, Robbins (1984) results do not support Wibben’s 

(1976) suggestion that there are no significant differences between rural and urban basins. 

For Memphis and Shelby County, Neely (1984) used data from 27 basins, ranging from 0.043 to 

19.4 sq.mi. He considered nine potential basin descriptors for his regressions: drainage area, 

IA, mean basin slope, mean basin length, mean channel slope, main channel length, channel 

condition (a measure of what proportion of the main ditch is lined), channel width, and basin 

shape. Some of these variables are evidently correlated (e.g., basin length and channel length); 
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moreover, shape can be inferred by a regression model given basin area and some measure 

of its length. Also, channel width is a hydraulic variable of little if any interest in explaining peak 

discharges. Neely’s (1984) equations, which are also derived using synthetic (i.e., modeled) 

flood data, are function of basin area to a power a between 0.76 and 0.81, and an “average 

channel condition” to an exponent 1.04 to 1.11. This latter characteristic is supposed to reflect 

the degree of urbanization of the watershed, but it clearly is only a very rough descriptor or 

index. Neely (1984) did not use any precipitation variable in his analysis, correctly reasoning 

that the same rainfall climate applied to all his locations within the greater Memphis area. 

Previously, based on the same gauging stations used by Neely (1984), but with much shorter 

records (2 years at most), Boning (1977) had proposed urban equations for Memphis/Shelby 

County as a function of drainage area, IA, and maximum rainfall over 120 min. Even though his 

study was preliminary, as it was based on scant data, it used an event-based approach instead 

of synthetic data, extracting as much information as possible from all sizeable flood events 

observed over the two-year period. It also focused on those basin descriptors that one would 

a priori expect to influence urban floods the most, including the role of the rainfall over a 

duration that makes conceptual sense (2 hours), considering the range of basin sizes. 

There are several consistent issues with the few existing urban equations for Tennessee: 

a. Except for Robbins (1984), who focused on cities with 5,000 – 100,000 people, across the 

state, current estimation methods for urban peak flows are limited to Memphis-Shelby 

County or Nashville-Davidson County. Sadly, only one of the 22 stations that he used is still 

under operation; all others were discontinued at the end of the study, or shortly thereafter. 

b. Existing methods for urban peak flows are based on short records so all authors used 

rainfall-runoff models to extend them, generating synthetic annual maxima based on rainfall 

records. This introduces a large uncertainty in the estimates. Boning (1977) is the exception, 

as he uses an event-based approach, although for a very small sample size of events. 

c. Neely (1984) did not include precipitation as an input variable, so his equations cannot be 

used for analyzing the effects of rainfall trends. This is a problem because of the attribution 

issue: if peak flows are changing in time, it will not be clear whether this is due to changes in 

urbanization, or in extreme rainfall, or both. Also, Neely’s (1984) equations do not explicitly 

consider any variable closely correlated with urbanization rates; “average channel condition” 

is a very general descriptor that only describes the condition of the mainstream channel at 

a few cross-sections. It can be assumed that it will tend to be higher in highly urbanized 

areas, but it is difficult to visualize how it actually relates to typical measures of urbanization, 

and how will it change in the future, for any specific watershed that is being urbanized. 

d. Robbins (1984) used the maximum 24-hr depth as an index for rainfall at each location. This 

duration is too large for his range of urban basin sizes, as most events causing peak flows in 

such small watersheds are convective (i.e., thunderstorms), and thus better represented by 

durations in the range of 6 hours or less (e.g, Smith et al., 2013). This probably explains for 

the huge range of fluctuation for the rainfall exponent in Robbins’ equations as return period 

is increased. It is important to note that convective events do not scale similarly to frontal 

(also known as cyclonic or stratiform) storms, neither in time nor space. 

e. All of the existing equations are based on data and procedures that are 40 years or older, 
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and thus are outdated regarding  (a) the last few decades of streamflow records (even 

though there are not many urban stations in Tennessee), (b) the magnitude of recent 

precipitation extremes, (c) the type of urbanization patterns, (d) the introduction of 

requirements for flow detention and other storm water control measures, and (e) newer 

knowledge regarding both the hydrologic response of urban watersheds and data analysis. 

2.3 Precipitation trends in Tennessee 

Is Tennessee seeing trends in extreme rainfall for those durations relevant to designing urban 

infrastructure? The frequency and magnitude of extreme events appear to be increasing in 

many countries, including the U.S. (Wuebbles et al., 2017). The Intergovernmental Panel on 

Climate Change (IPCC, 2023) has concluded that increases in frequency and intensity of heavy 

rainfall events are likely in the future, over North America, Europe, and Asia. Regionally, 

increasing trends in heavy precipitation have already been observed with at least medium 

confidence for half of the IPCC’s (2023) climatic regions.   

For the Southeast U.S., Powell & Keim (2015) documented a general increase in the intensity of 

extreme rainfall events between 1948 and 2012, except for more easterly locations. Skeeter et 

al. (2019) found that intense precipitation events, defined as the top 1% (or above the 99th 

percentile), have significantly increased in the region, both in numbers (but only in the fall) and 

magnitude. Specifically, the Ohio-Mississippi Valley physiographic region, which covers most of 

Tennessee, has seen one of the highest and most significant increases in event frequency. 

These results concur with those of Mallakpour & Villarini (2017), who also note that the increasing 

trend in frequency is stronger than that in magnitude, even though they use gridded instead of 

weather-station daily data. Brown et al. (2020) analyzed the trends in hourly precipitation at 50 

weather stations across the Southeast U.S., finding significant positive increases at 44% of 

them, but this refers to the mean and the 90th percentile hourly precipitation, not the actual 

maxima. Rahman et al. (2023) characterized the spatial and temporal changes in all precipitation 

events with an intensity above a threshold of 1 in/h, finding that these have increased at 53% 

of the 61 analyzed stations, with the change being significant at 34% of the stations. 

The issue with all these studies is that they are either at the event or the daily scale, which is 

not useful for the purposes of the present work, or else, if hourly, they do not consider the 

maxima but only changes in the distribution of hourly rainfall values. The study of precipitation 

extremes for sub-daily durations to has been more limited. Barbero et al. (2017) used hourly 

precipitation data from the National Centers for Environmental Information (NCEI) to compute 

trends in hourly and daily precipitation extremes across the contiguous U.S., noting that 

changes in sub-daily precipitation extremes may emerge more slowly than for daily extremes. 

Usually, rainfall extremes are studied with the annual maxima approach, extracting yearly 

maxima for the different durations of interest (e.g., one hour) before analyzing them. But given 

that many rainfall data are now available at finer resolution (e.g., the 15-min data available for 

most weather stations in the contiguous U.S., as well as the 1-min data at ASOS - Automated 

Surface Observing Systems - rain gauges), it is possible to individualize independent events (or 

storms), and then investigate whether trends in their characteristics (internal and external) are 

occurring. In his seminal work on a statistical formulation of the water budget, Eagleson (1978) 

used derived distributions to represent rainfall variability based on the attributes of individual 



 

 
13 

events. Meier et al. (2016) showed that this method only requires a few years of rainfall data in 

order to obtain an adequate climatological description of rainfall totals. Thus, we propose that 

event-based approaches hold promise for detecting non-stationarity over shorter periods, as 

well as for shorter records. At the same time, using an event-based framework allows for partial 

duration (POT) approaches to be used for estimating extremes. As high-quality records of point 

precipitation with a fine temporal resolution are typically short, it seems important to extract 

as much information as possible from them, beyond the annual maxima. 

We conclude that there is a research gap about possible recent trends in hourly and sub-hourly 

extreme precipitation in the Southeastern U.S.A., and specifically in Tennessee. 

2.4 Descriptors of urbanization at the basin scale 

This part of the research work focuses mainly on studying the effects of urbanization on the 

generation of peak flows. Specifically, in Task 4, a large effort was devoted to the derivation of 

improved indices of urbanization to be used in regional models for estimating peak flows. 

General context for urbanization indices 
Most regional peak-flow equations for urban basins (e.g., Southard, 2010; Austin, 2014; Feaster 

et al., 2014; Kennedy & Paretti, 2014) include IA (% of impervious area) as a lumped descriptor 

of the degree of urbanization. This is sound, as developing the land should affect a basin’s 

response, decreasing infiltrability while raising runoff volumes and speeds, which ultimately 

yields increased peak flows (Konrad, 2003). However, IA alone cannot fully characterize the 

effects of urbanization on peak flows, as it does not consider the spatial distribution of the 

impervious surfaces. E.g., Fig. 2.1 shows two contrasting spatial configurations of pervious and 

impervious areas, for the same, simple “open-book” basin. Both have the same area, slope, 

shape, and IA (50%), but they are expected to produce quite different flood hydrographs for 

the same rainfall event: Case (a) will result in higher peak flows and shorter lag-times than (b). 

 

 

Figure 2.1. Comparison of two “open textbook” basins with the same area, shape, slope, and 
percentage of impervious areas, but with different spatial distribution of the impervious areas with 
respect to the main channel and the outlet.  

 

In Case (a), all rain falling on the paved strips will be fully converted to runoff, quickly flowing to 

the channel and then towards the outlet, without suffering infiltration losses; instead, in Case 

(b), as runoff produced over the paved areas flows over pervious land, it would be decreased 

in volume as well as delayed, due to infiltration losses and slower speeds caused by higher 

surface roughness (Liu & De Smedt 2004), respectively.  
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This simplistic example clearly shows how IA ignores important information about how 

different impervious patches are located with respect to each other, the stream network, and 

the basin’s outlet, which is relevant in predicting peak flows. Any model that only considers IA 

as an index for the degree of urbanization is unnecessarily discarding a potentially large 

amount of explanatory power, by omitting the spatial arrangement of basin surfaces.  

A more informative descriptor of urbanization should consider how impervious areas are 

hydrologically connected to each other, to the pervious patches located downslope, and to the 

stream network and its outlet. Hydrologic Connectivity (HC), the spatially distributed, directional 

property induced by topographic gradients and affected by the spatial arrangement of land-

cover patches with different infiltrability and distance to the stream network, may serve this 

purpose, providing novel ways of deriving lumped connectivity-based urbanization indices.   

State-of-the-art for connectivity indices 
A well-known, GIS-based formulation for basin connectivity was proposed by Borselli et al. 

(2008) for characterizing the potential for sediment erosion and transport at the basin scale, 

and was then modified by others (Cavalli et al., 2013; Persichillo et al., 2018; Zanandrea et al., 

2019) to focus on other watershed dynamics such as runoff (Hooke et al., 2021) or landslide 

occurrence (Husic & Michalek, 2022). Its general formulation defines, for each raster cell k of 

the basin hillslope component (i.e., excluding cells from the stream network), an upslope and 

a downslope component (𝑫𝒖𝒑,𝒌 and 𝑫𝒅𝒏,𝒌, respectively; see Fig. 2.2), from which the index of 

connectivity 𝑰𝑪𝒌 is then computed as the logarithm of their ratio (Eq. 2.1; Borselli et al. 2008). 

 

Eq. (2.1) provides a connectivity index 𝑰𝑪𝒌 for a generic hillslope cell 𝒌; applying it to all hillslope 

cells, a connectivity raster is obtained for the basin. Conceptually, the upslope component 𝑫𝒖𝒑,𝒌 

denotes the potential for the drainage area upstream of cell 𝒌 to generate runoff, which is 

assumed to be proportional to its length scale (square root of its area) and mean slope; the 

downslope component 𝑫𝒅𝒏,𝒌 accounts instead for the ease with which runoff can travel from 

the reference cell 𝒌 to the stream network, along a travel path imposed by topography.  

The expressions for 𝑫𝒖𝒑,𝒌 and 𝑫𝒅𝒏,𝒌 (Fig. 2.2) contain weighting factors �̅̅̅� and 𝑾 for the upslope 

and downslope components, respectively. A larger or steeper drainage area upstream of 

reference cell 𝒌 would result in higher connectivity values for that cell, reflecting conditions 

associated with potentially larger runoff (or sediment, in the original formulation) volumes or 

faster runoff travel times. In turn, longer travel distances or flatter paths in the downslope 

component decrease the connectivity, reflecting a lower potential of cell 𝒌 to readily contribute 

runoff to the stream network. 𝑺𝒊, 𝒅𝒊, and 𝑾𝒊 in the downslope component represent the slope, 

travel distance, and a weighting factor, respectively, for each cell 𝒊 located on the travel path 

between reference cell 𝒌 and the location where that path pours to the stream (or more 

generally, drainage) network; the summation that defines the downslope component covers all 

cells 1, …, 𝒊, …, 𝒏𝒌 located downstream of cell 𝒌, along the travel path to the stream network, 

which is generally obtained by the D8 or D-infinity algorithm (Tarboton 1997; Hooke et al. 2021). 
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In the upslope component, 𝑨𝒌, �̅�𝒌, and �̅̅̅�𝒌 represent the area, average slope, and average 

weighting factor of the drainage area located upstream of reference cell 𝒌. �̅�𝒌 and �̅̅̅�𝒌 are the 

arithmetic means of the slopes and weighting factors, respectively, over the upstream area. 

The weighting factor may change depending on the process for which the basin connectivity is 

being established. For instance, Borselli et al. (2008) considered a measure of the potential for 

erosion, namely the RUSLE C-factor (Renard et al., 1997), as the weighting coefficient for their 

sediment transport model. On the other hand, morphologic characterizations (Cavalli & Marchi, 

2008) or landslide risk assessments (Husic & Michalek, 2022) typically use some measure of 

topographic roughness. A possible weighting factor of hydrologic interest can be a function of 

the Manning’s surface roughness coefficient 𝒏, which depends primarily on the land-cover (LC) 

type of each basin cell (Hooke et al., 2021). Manning’s 𝒏 has been used in different types of 

applications, such as the study of anthropogenic effects on landscape and sediment transport 

changes (Persichillo et al., 2018), landslide occurrence (Zanandrea et al., 2019), and runoff paths 

(Hooke et al., 2021); a typical weighting factor is 𝑾 = 1 − 𝒏 (Persichillo et al., 2018; Zanandrea 

et al., 2019; Hooke et al., 2021), so that rougher cells (with higher 𝒏) get a lower weight. 

 

 
 

Figure 2.2. Scheme for determining the connectivity of generic cell k (from Borselli et al., 2008).  

 

2.5 Overlapping effects of the variability in rainfall, antecedent 

conditions, and land cover 

As stated in Task 5, event-based analyses must account for the effects of antecedent conditions 

on urban floods, and how these interact with the spatio-temporal variability in the rainfall input 

and changing urbanization. Next, we introduce the general problem, sketch a possible 

methodological approach, and review recent data-driven rainfall-runoff modeling techniques. 
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The general problem 
Antecedent soil moisture (ASM), changes in urbanization, as well as rainfall variability in space 

and time affect hydrologic response in highly nonlinear ways, varying across basins of different 

sizes and geomorphic conditions. E.g., for a given drainage, more intense storms should cause 

floods with shorter lag-times and larger peaks, for the same land-cover (LC) and ASM conditions, 

particularly in small urban basins affected by intense thunderstorms (common in Tennessee). 

However, urbanization may also lead to larger floods as compared to pre-development 

conditions, especially in basins with high-infiltrability soils. This also affects the sensitivity to 

ASM conditions, so that, e.g., clay-dominated basins should display less variability in their 

hydrologic response as compared to high-infiltrability watersheds, with respect to ASM. 

The complex, highly site-specific nature of how all these aspects interact to affect a basin’s 

hydrologic response made Task 5 one of the most challenging of the project. This is especially 

true when considering the observation-driven nature of the “experiments” (those basins that 

happen to have flow data), which precludes considering single scenarios of ASM, LC changes, 

and rainfall intensity, while controlling for the other factors. Not only is there a range of 

different combinations of ASM, LC changes, and precipitation conditions in the historic records 

available for each candidate case-study watershed, but all these drainage basins differ from 

each other in terms of the sensitivity of their hydrologic response to these interacting aspects.  

A possible methodological approach 
Initially, these aspects led to major difficulties in determining an experimental methodology for 

studying the effects of ASM, LC variations, and precipitation intensity, considered individually, 

and then generalizing the findings across a range of watersheds with different characteristics. 

However, after an in-depth review of recent rainfall-runoff modeling techniques (Abrahart et 

al., 1999; Campolo et al., 1999; Dawson and Wilby, 2001; Kumar et al., 2004; Aqil et al., 2007; 

Shamseldin, 2010; Kratzert et al., 2018; Couta et al., 2019; Hu et al., 2020; Xu et al., 2020), 

discussed below, we realized that a shift from the originally proposed “event-based” framework 

to a methodology based on performing continuous flow predictions based on past flow and 

rainfall records could circumvent some of the above-mentioned difficulties. Such approach 

focuses our analysis on the effects of LC and LC changes over time, even though at the price of 

neglecting the influence of ASM conditions, which are implicitly accounted for by the model, 

when considering continuous precipitation time series as the model input. This became our 

preferred line of action, as this project mainly focuses on the study of the effects of land-cover 

(degree of urbanization, in particular), while ASM conditions may be regarded as a secondary 

target; furthermore, this methodology intrinsically presents continuity with, and expands the 

range of applications of the connectivity-based index of urbanization presented in Section 3.3.  

Review of data-driven rainfall-runoff modeling techniques 
Recent data-driven applications in hydrology have framed rainfall-runoff modeling as a 

continuous time-series prediction problem, where flow at future time steps is inferred from the 

past values of two variables, the discharge itself and the rainfall over the basin (Dawson and 

Wilby, 2001). In general, the rainfall-runoff process at the basin scale is highly non-linear (Xu et 

al., 2020), determined by dynamic aspects such as point infiltration rates, the spatio-temporal 

variability of the rainfall intensity, and the interaction of runoff generated from different 
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landscape patches. In turn, infiltration is affected by the antecedent soil moisture (ASM) 

conditions, dependent on past precipitation and evapotranspiration rates (Ponce, 2014). 

Because of their versatility in approximating non-linear functions (Hornik et al., 1989; Schäfer 

& Zimmermann, 2006), artificial neural networks (ANNs) have been used recently to obtain 

basin rainfall-runoff models calibrated on data (Dawson & Wilby, 2001). Xu et al. (2020) showed 

that ANN models achieve forecast performances comparable to distributed physical models 

calibrated and tested on the same basin. However, while the latter require characterizing the 

basin (Beven, 2012), ANNs allow for quickly developing powerful river-flow forecasting models, 

only from concurrent flow and rainfall data (Abrahart et al., 1999; Campolo et al., 1999; Aqil et 

al., 2007; Hu et al., 2020; Xu et al., 2020). Their aptitude for flow forecasting spans a wide range 

in terms of basin size (from a few to hundreds of thousands of square kilometers; Abrahart et 

al., 1999; Campolo et al., 1999; Dawson and Wilby, 1999; Kumar et al., 2004; Aqil et al., 2007; 

Shamseldin, 2010; Couta et al., 2019; Hu et al., 2020; Xu et al., 2020), structure of the rainfall 

input (i.e., uniform vs. spatially variable; Abrahart et al., 1999; Campolo et al., 1999; Dawson 

and Wilby, 1999; Aqil et al., 2007, Hu et al., 2020; Xu et al., 2020), as well as the temporal 

resolution of the data, from a few minutes to hours, days, or even months (Abrahart et al., 1999; 

Dawson and Wilby, 1999; Kumar et al., 2004; Aqil et al., 2017; Kratzert et al., 2018). Typically, 

mean flows are used over each time block for larger time-steps (e.g., one day or one month), 

while instantaneous flows are considered for hourly or smaller time steps (Dell’Aira et al., 2022). 

In turn, the heterogeneity in the time-series resolution affects the lead times for the forecasts. 

The first ANN architectures used in river flow forecasting were multi-layer perceptrons (MLPs) 

(Abrahart et al., 1999; Campolo et al., 1999; Dawson and Wilby, 1999; Dawson and Wilby, 2001), 

but after a few years, recurrent neural networks (RNNs) started replacing them (Kumar et al., 

2004; Aqil et al., 2007; Kratzert et al., 2018; Couta et al., 2019; Hu et al., 2020; Xu et al., 2020). 

Among the latter, Kumar et al. (2004) and Aqil et al. (2007) used a simple RNN architecture that 

recirculates the output and the hidden-layer activations at each prediction to the input layer in 

the next one, giving the network a short-term memory to learn short temporal patterns in 

sequential data (e.g., ASM conditions from rainfall time series, in our case). In the most recent 

applications, however, (e.g., Kratzert et al., 2018; Couta et al., 2019; Hu et al., 2020; Xu et al., 

2020), a more advanced type of RNN, namely the long-short term memory (LSTM) network has 

become widespread. LSTM networks differ from the traditional ANNs and simple RNNs in the 

type of “neurons” (or units) that are deployed to build their architecture. Traditional ANNs have 

units that work as a simple input-output function, where the input signal from other units 

(through “dendrites”, using the terminology from biology) is algebraically combined and then 

transformed by an activation function (popular examples are the sigmoid and the hyperbolic 

tangent functions), before being sent out as the neuron’s output signal (through the “axon”) to 

other units, that in turn receive it as part of their inputs. In contrast, LSTM networks are made 

of more sophisticated units that, besides exchanging input and output signals with other units, 

also have an internal state that can store information from past inputs. This gives each LSTM 

unit (and the network made from many of these units) the ability to produce output signals not 

only based on the current input, but also incorporating information from past inputs. The rules 

for the storing/update of the internal state, as well as the way current input and internal state 

information are combined to produce the output signal at each step are both calibrated during 

training; hence they depend on the specific process approximated by the model.  
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In this way, LSTM networks can learn from patterns in sequential data. In the field of hydrology, 

Kratzert et al. (2019) have shown that the internal states in properly trained LSTM rainfall-runoff 

models do correspond to hydrologic states from our qualitative understanding of the physical 

processes related to runoff generation, such as water storage in the groundwater (which 

controls baseflow), in the upper-layer soil moisture (i.e., ASM conditions, affecting the direct 

surface runoff), and even water volumes stored as snowpack, when the temperature is below 

the freezing point. 

Based on this, we propose that using an LSTM model trained with spatially distributed rainfall 

inputs could be used as an investigation tool to analyze the effects of changes in land-cover 

and how these interact with rainfall-runoff dynamics. 

 

2.6 Uncertainty and bias in extreme rainfall and flood estimation 

Here, we discuss possible sources of uncertainty in our traditional estimates of extreme rainfall 

and floods, and briefly review recent evidence indicating that these could be negatively biased, 

due to a range of methodological reasons. We first discuss the literature, including our own 

work on rainfall extremes at the sub-hourly and hourly scales, before focusing on floods. 

Errors and biases in the estimation of extreme rainfall 
Many authors have recently suggested that standard estimates for IDF-DDF values are 

outdated in the U.S., due to the non-stationarity of extreme rainfall (e.g., Wright et al., 2021; 

Kim et al., 2022; First Street Foundation, 2023). Basically, this relates to the fact that IDF-DDF 

values estimated from long rainfall records, which are necessarily weighted by the older data, 

do not reflect the current climate. This negative bias evidently affects infrastructure design. 

We mostly agree with the issues raised in these studies but opine that there could be further 

reasons why published IDF-DDF values should be expected to either underestimate actual 

rainfall intensities in the U.S., and specifically in Tennessee, or at least be more uncertain than 

typically reported. These issues, which to our knowledge have not been pursued in the 

literature but for which we have preliminary results from our own research, are related to the 

fact that: (i) weather stations are sparse in the U.S. (e.g., density is about 17 times smaller in the 

Southeastern U.S. than it is in Germany), (ii) this low density of rain gauges should affect the 

regionalization procedures that are used to perform frequency analysis of extreme rainfall, and 

(iii) most rain gauges in the U.S. have a resolution of 15 min, which introduces a negative bias, 

as rainfall amounts are totalized over clock or fixed periods, lowering the true, continuous-time 

maxima, at least for those shorter rainfall durations close to the gauge resolution. 

Effects of rain gauge density 

Rain-gauge density effects on extreme rainfall estimation have not been systematically studied 

before, to our knowledge; we propose that they should at least affect the uncertainty of IDF-

DDF estimates. Traditionally, confidence intervals for extreme rainfall estimates are obtained 

by resampling the point-scale data; as frequency analysis procedures are regional though, it 

should be the case that a higher density of stations should decrease uncertainty in local, point 

estimates, and vice-versa. We raise this issue because of the sparsity of weather stations in the 

U.S. - with large surface areas per rain gauge - as compared to the typical spatial scale of the 

rainfall mechanisms that are expected to result in urban floods in this part of the world.  
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Herrera et al. (2019) showed that station density has a greater influence on explaining the 

variance in gridded precipitation products, as compared to how interpolation is performed. 

This study was done for the mean annual and 50-year return period values for daily rainfall; 

effects on sub-daily precipitation and event maxima are still unexplored. Berndt et al. (2014) 

revealed that a higher density of rain gauges decreases the error in various interpolation 

techniques used to merge radar and gauge data. Lengfeld et al. (2020) showed that in Germany, 

only 17.3% of the heavy, hourly precipitation events observed with weather radar were 

detected by the rain gauge network, while weather stations only perceived 52% of the daily, 

heavy (above a threshold) events in the U.K. Given that Germany and the U.K. have two of the 

densest gauge networks of any country, we should possibly expect different IDF-DDF values if 

the station density were higher than what it currently is in the U.S. Pöschmann et al. (2021) 

suggest that the spatial distribution of 5 min to 1 hour extreme precipitation is not necessarily 

dependent on relief, as tends to be the case for longer durations. This highlights the importance 

of a dense gauge network when attempting to estimate DDF values for extreme rainfall. 

The most widely adopted approach for developing spatial maps of DDF values is the Regional 

Frequency Analysis (RFA) introduced by Hosking and Wallis (1997). This method requires either 

clustering gauges into “homogeneous regions” or else defining a Region of Influence (ROI) 

around each gauge, as explained by Burn (1990), in order to estimate regional parameters for 

the selected distribution. But if the weather stations are too far apart, there is a higher 

probability that the parent distributions will be different, which will affect estimation. 

Summarizing, previous studies have underscored the impact of rain-gauge network density on 

precipitation estimation. However, they have focused on time scales longer than sub-hourly 

and have not studied precipitation maxima over a range of durations. Thus, current knowledge 

fails to explain the effects that the spatial density of the gauge network can have on the 

estimation of the distribution parameters and the resulting DDF values. Additionally, prior 

studies have often relied on rainfall data with low temporal resolution, which introduces 

uncertainty linked to sampling maxima from discretized or totalized series, as discussed below. 

Effects of rain gauge temporal resolution 

These arise because most long-term “continuous” rain gauges in the U.S. actually aggregate 

rainfall over rather long 15-minutes clock intervals. Thus, during an actual event, we only know 

the depths collected between 8:00 and 8:15, and then between 8:15 and 8:30, and so on. This 

creates a problem in engineering practice, when attempting to estimate extreme rainfall for 

shorter durations, say 2 hours or less: we always underestimate, because the fixed maxima 

that we extract from the record must be smaller than the true ones, that would have occurred 

in continuous time. To compensate for this, we use rainfall Sampling Adjustment Factors (SAFs). 

These corrective factors are derived at those few rain gauges with finer temporal resolutions, 

say 1-min, where we can compare the true maxima, in (almost) continuous time, with the fixed 

maxima that would be obtained from a gauge with lower (i.e., 15-min) resolution. Typically, 

when the duration is the same as the instrument resolution (e.g., obtaining the IDF-DDF values 

for a duration of 15 min at gauges that totalize every 15 min– we refer to this case as having a 

sampling ratio of 1), we term the SAFs as Hershfield factors, as he first proposed this method, 

in Technical Paper (TP) N. 24 (U.S. Weather Bureau, 1953).  
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When computing the ratio of the DDF value obtained for continuous, 24-hour rainfall data to 

that for fixed, daily precipitation, as well as the ratio of DDFs obtained from continuous, 60-

minute rainfall to that for fixed, 1-hour, Hershfield found an average value of 1.13 in both cases, 

for different locations.  

Papalexiou et al. (2016), Morbidelli et al. (2018), and Llabrés-Brustenga et al. (2020) review 

previous literature on SAFs. The main issues in relation to this project, is that up to now, no 

study has looked at SAFs for sub-hourly durations, nor considered their variability. Averaging 

across locations, for a sampling ratio of 1, most studies have found values that are very close 

to the 1.13 originally proposed by Hershfield in TP N. 24 (U.S. Weather Bureau, 1953). This 

means that, on average, DDF values obtained from totalized data should be multiplied by 1.13 

in order to obtain the “true” precipitation maxima. Current IDF-DDF values derived for the US 

(Atlas 14), mostly from gauges that totalize every 15 minutes, use such fixed, mean SAFs 

uniformly, but this raises questions about their variability. The only research about SAF 

variability that we are aware of, that also happens to focus on short rainfall durations of interest 

in urban floods, comes from our group and is discussed next. 

Muñoz et al. (2018) and Meier et al. (2019), using 34 concurrent years with 10-min rainfall data 

from a dense network in Switzerland (52 gauges over 15,940 sq.mi, so 307 sq.mi per station, 

nine times higher than in the Southeastern U.S.), found a large variability, both at the point (at-

a-gauge) scale as well as spatially, in the factors used to “correct” extreme rainfall estimates 

obtained from totalized precipitation data. For a sampling ratio of 1 (e.g., when estimating the 

30-min rain maxima with data totalized every 30 minutes), we found mean SAF values between 

1.11 and 1.12, very similar to Hershfield’s; but at some sites, for some durations, SAFs could 

reach values as high as 1.22. In such cases, correcting by the mean SAF, as usually done, would 

result in a design rainfall underestimated by about 10%.  

Moreover, using concurrent lightning strike data, Muñoz et al. (2018) and Meier et al. (2019) 

demonstrated for the same 52 Swiss stations that these correction factors are significantly 

larger for the case of convective (thunderstorm) rainfall, than for synoptic or frontal events. It 

is important to note that most research on this topic has been performed for daily, or at the 

most hourly data; our group’s research has focused on assessing these effects at the sub-hourly 

durations that are critical to many urban infrastructure designs. As part of the present project, 

we have retaken this research with a German dataset that includes 862 stations (1 gauge every 

160 sq.mi., 17 times higher than in the SE U.S.), with rainfall data at 1-minute time steps. This 

allows for a much better understanding of the biases introduced by using fixed, clock rainfall 

data when determining DDF-IDF values for the short durations that are relevant to urban 

hydrology. Specifically, this information should help us estimate by how much we could err 

when using 15-min rainfall data to compute DDF-IDF values for durations between 15 minutes 

and two hours (i.e., for small sampling ratios). 

Potential underestimation of frequent floods 
One goal of this project was to perform event-based approaches for analyzing rainfall-runoff 

data, including the use of partial-duration (“peaks-over-threshold”, POT) methods for frequency 

analysis.  
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As part of this, we reviewed the methodological approaches applied in such type of analyses, 

ranging from the most popular criteria for event separation to the advantages (and 

disadvantages) of performing POT frequency analysis (FA), as compared to annual maxima (AM) 

frequency analysis, including also state-of-the-art techniques for the choice of the threshold.  

Pan et al. (2022) provides a review of the technical aspects, including the theoretical framework 

and established independence criteria, while a list of threshold selection algorithms can be 

found in Kiran & Srinivas (2021). For the purposes of this project, it is worth mentioning that 

POT-FA presents multiple advantages as compared to AM-FA, at the price of a more 

cumbersome procedure that requires the preliminary identification of each independent event 

in the discharge record, as well as the choice of a threshold for extreme events. The advantages 

of POT-FA over AM-FA involve: (i) a larger number of peak flow values for the same record 

length (Tavares & Da Silva, 1983; Robson & Reed, 1999; Bezak et al., 2014; Pan et al., 2022), (ii) 

the fact that potentially influential low flows (PILFs) are automatically excluded from the peak 

series (Cohn et al., 2013; Plavšić et al., 2016; England et al., 2019), and (iii) the possibility of 

predicting unbiased quantiles for small-return-period (i.e. frequent) events (Langbein, 1949; 

Wyżga, 1995; Keast & Ellison, 2013; Karim et al., 2017). While (i) and (ii) only represent practical 

advantages, the negative biases introduced when estimating frequent floods with annual 

maxima (Langbein, 1949) deserve more attention.  

This underestimation comes from the conceptual difference in the average interarrival time 

(AIT) that each method predicts for a given flood value (Wang & Holmes, 2020; Dell’Aira et al., 

2023). Specifically, AM-FA estimates a return period (R), i.e., the average number of years with 

no events between years in which the event did occur. This means that the minimum AIT value 

that AM-FA can predict is one year, in theory at least. In contrast, POT-FA predicts an average 

recurrence interval (ARI) independent of any temporal sampling into distinct time blocks (years, 

in the case of AM), which means that AIT values can also be obtained at the sub-annual scale. 

This makes POT-FA conceptually more appropriate than AM-FA for predicting frequent floods 

(i.e., with return periods less than 5 years; Karim et al., 2017; Ball et al., 2019; Dell’Aira et al., 

2023), explaining why national guidelines from other countries (e.g., Australia; Ball et al., 2019) 

recommend the use of POT series for the estimation of this kind of events. In the U.S., however, 

it seems that the issue of frequent flood (FF) underestimation has not received the same 

attention, since AM-FA is systematically performed even when predicting events with return 

periods as low as 2 years, or even less (e.g., Southard, 2010; Austin, 2014; Feaster et al., 2014; 

Kennedy & Paretti, 2014).  

The reasons why AM-FA enjoys greater popularity than POT-FA are clear. The main one is 

probably the wider availability (both in space and time) of AM series, as compared to POT series. 

Another aspect that likely plays a role is the lack of systematic research efforts on FF 

underestimation, with only a few studies involving a limited number of regions in the world, 

such as Poland (Wyżga, 1995) and Australia (Keast & Ellison, 2013; Karim et al., 2017). Findings 

from these authors are consistent, and mainly involve the observation that the amount of 

underestimation is site-dependent and affected by the type of climate and resulting flow 

regime, as rivers with flashy behavior, typical of dry regions, display greater FF underestimation 

than rivers in humid regions, with more stable flows (Wyżga ,1995; Karim et al., 2017).  
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As the search for better descriptors of the degree of urbanization involves testing the 

performance of regional models in predicting flood quantiles that are generally derived from 

AM-FA, the issue of frequent flood underestimation has potential implications for this project; 

it may well be the case that estimates for frequent floods may require some type of bias-

adjustment, in order to prevent that the testing is performed on underestimated quantiles. 
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Chapter 3 
We describe the methods used for obtaining results related to UofM Task 3 - precipitation trends, 

Task 4 – urbanization indices, and Task 5 – interacting effects of the variability in rainfall, 

antecedent conditions, and land-cover, presented in the following order: (i) trends in extreme 

rainfall, (ii) formulation of a connectivity-based urbanization index, (iii) land-cover effects on 

rainfall-runoff conversion through continuous simulation with data-driven models, (iv) potential 

biases and uncertainties in extreme rainfall, and (v) frequent flood underestimation. 

3.1 Trends in extreme precipitation frequency 

The objectives include analyzing temporal trends in the frequency of hourly and sub-hourly 

extreme precipitation events for Tennessee and surrounding states, as well as investigating their 

spatial structure. In this preliminary study, we did not look at trends in the magnitude of 

extremes, as this requires better assurances with respect to the quality of the precipitation data. 

Study region and available data 
The analysis covers 11 southeastern U.S. states, depicted in Fig. 3.1. Rainfall data were gathered 

from two distinct gauge networks. The hourly precipitation data (HPD) network with data every 

15 min is maintained by the National Weather Service’s (NWS) Cooperative Observer Program 

(COOP), while the Automated Surface Observing Systems (ASOS) network is a joint program of 

the NWS), the Federal Aviation Administration (FAA), and the Department of Defense (DoD), 

with gauges at 1-min resolution. For this project, we downloaded the COOP data from the NWS 

site, and the processed ASOS data from Iowa State University, Iowa Environmental Mesonet.  

Data processing  
Initially, we downloaded data for 348 COOP and 149 ASOS stations, with respective temporal 

resolutions of 15 min and 1 min.  Dropping rain gauges with < 10 yrs of data, 147 ASOS and 326 

COOP stations were analyzed for the study. The study area and 473 stations are depicted in Fig. 

3.1, while Fig. 3.2 shows the distribution of record lengths.  These rain gauges cover a large area 

of 501,000 sq.mi., so that the actual average density of stations is rather low, with only one 

station every 2744 sq.mi. The mean record length is 25.4 years, while the median is 26.3 years.  

We caution here that in an earlier analysis of this COOP data we detected many anomalies; for 

example, data for the same gauges and periods, but downloaded from different official websites 

displayed clear differences in the maxima. Given the preliminary nature of this part of our work, 

it would be out of scope to explore this issue in further detail, but this should be investigated 

in any future research. It is important to note that 74% of the stations use Fisher and Porter 

rain gauges, with a totalization period of 15 min, which results in potential under-estimation of 

the reported DDF values, due to the uniform use of mean SAF values (Section 2.6). 

The precipitation data files for the COOP stations contain many missing intervals and data flags. 

We considered missing values to be null if the interval without data was longer than 6 hours. In 

the case of intervals with missing data shorter than 6 h, when data flags indicating total depth 

were available, we decided to equally distribute the cumulative accumulation among each 

missing value.  
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This preliminary procedure ensures that we do not overestimate our result by replacing 

missing data with unrealistically large intensities, but it could also result in underestimation if 

the missing periods did indeed contain high rainfall intensities. 

 

  

Figure 3.1. Map of the study area with rainfall stations. Blue dots depict weather stations from the 1-
min ASOS network while red dots show stations in the COOP network, with 15-min resolution.  

Procedures   
Because we are interested in event-based analyses, we first identified all independent storms 

at each gauge by adopting a minimum interevent time (“dry time”) of 3 h to distinguish between 

events. For each individual storm, we first computed its external characteristics (storm duration, 

total depth) and then proceeded to extract the storm maximum depths for the following 13 

different durations: 15 min, 30 min, 45 min, 1 h, 1.5 h, 2 h, 3 h, 4 h, 6 h, 9 h, 12 h, 18 h, and 24 

h. Note that maxima were not extracted when the duration of interest was longer than the 

storm duration, so as to not “dilute” the actual storm depths over longer durations than those 

over which it actually rained.  In this way, we obtained 13 series of rainfall depth maxima at 

each station, generally of different lengths, one for each duration of interest. For each one of 

these time series, we then computed the 90th percentile, which was used as a threshold. 

Subsequently, for each station and duration of interest, we created a series of exceedances 

that tracks the number of event maxima per year that exceed the corresponding 90th 

percentile. Each data point in this time series represents the number of storms exceeding the 

90th percentile during that year. Finally, we checked for the presence of a trend in the frequency 

of extreme events, by applying two test methods to the time series: the parametric Ordinary 

Least Square (OLS) regression test and the non-parametric Mann-Kendall (M-K) test.  

The M-K test analyzes the sign of the differences between combinations of earlier and later 

data points, and then accumulates these signs to detect a trend. The null hypothesis states that 

there is no monotonic trend in the series while the alternate hypothesis is that a trend exists; 
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in such case, the trend can be positive, negative, or non-null. We used the function kendalltau() 

from the Python library to compute the Kendall tau and p-value for each time series. The value 

of this statistic lies between -1 to 1 where 1 represents a strong increasing trend while -1 

represents a strong decreasing trend. We decided to classify the significance of our trends in 

two categories: significant trend if p ≤ 0.05 and less significant trend if 0.1 ≤ p < 0.05. In this way, 

for each duration of interest, we were able to associate to each station one of the five labels: 

“significantly increasing,” “increasing,” “significantly decreasing,” “decreasing,” and “no trend.” 

 

Figure 3.2. Histogram showing the number of rain gauges with different record lengths in years. 

 

The OLS trend test assesses the presence and significance of the trend by fitting a linear 

regression line on the data. The null hypothesis in the OLS method states that there is no trend, 

i.e., the slope is not significantly different from 0, while the alternate hypothesis states that the 

slope significantly differs from 0, i.e., there is a trend. The p-value and confidence intervals of 

the slope give the significance of the trend. We used the OLS from the “statsmodel” Python 

library to perform linear regression and compute the required confidence intervals. In this way, 

for each rainfall duration, each one of the weather stations was classified as having a trend 

from one of the following four types: “Significant decreasing,” “insignificant decreasing,” 

“insignificant increasing,” and “significant increasing.” 

 

3.2 A hydrologic connectivity index for studying urbanization effects 

In this research, we propose new formulations to create a connectivity index that better suits 

the purpose of deriving a lumped, watershed-scale urbanization index based on hydrologic 

connectivity. Specifically, we alter existing conceptualizations by proposing (i) new expressions 

for the weighting coefficient 𝑾 and (ii) a generalized formulation for the upslope component.  

The new weighting coefficient 𝑾 considers the Curve Number (CN) of each basin cell, a metric 

proposed by the USDA (1986) to estimate the potential for runoff generation, based on the 

Hydrologic Soil Group (HSG) and Land Cover (LC) type of a land patch. CN values range between 
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0 and 100, where 0 indicates fully pervious, while 100 refers to no infiltration capacity, so that 

all precipitation becomes runoff, as for impervious patches with no retention. All possible 

combinations of LC-types and HSGs receive a CN value within this range, based on conversion 

tables proposed by the USDA (1986). Since infiltration during a storm event is affected by soil 

moisture conditions, three different CN values are given for each LC-HSG pair, related to dry, 

average, and wet antecedent conditions, based on rainfall depths in the previous days; the CN 

value that is typically tabulated and that will be used in this work corresponds to average 

antecedent moisture conditions (termed AMC II in USDA, 1986). To work with values in the 

range between 0 and 1, we define a new weighting coefficient for each basin cell as follows: 

 

Considering the CN as an alternative to Manning’s roughness coefficient 𝒏 (Hooke et al., 2021) 

is a natural choice for the definition of a runoff-connectivity index, similar to the use of the 

RUSLE C-factor (Renard et al., 1997) by Borselli et al. (2008) in defining their sediment 

connectivity index. The latter represents the potential for erosion, while the CN indexes the 

potential for runoff generation, considering both the infiltrability corresponding to each specific 

HSG as well as the ease with which runoff can move over the landscape, depending on LC type. 

Besides proposing a new 𝑾, we also introduce a more general formulation for the upslope 

component, where the characteristics of the drainage area upstream of the reference cell 𝒌, 

namely �̅̅̅�𝒌 and �̅�𝒌, are not necessarily obtained as arithmetic means, but are weighted by 

considering a custom weighting function 𝒘𝒋 = 𝒇𝒘(𝒄𝒆𝒍𝒍𝒋) that assigns a weight 𝒘𝒋 to each cell 𝒋 

upstream of the reference cell 𝒌, depending on some of its properties. The traditional 

formulation with arithmetic means �̅̅̅�𝒌 and �̅�𝒌 can be regarded as a special case of our 

approach, with 𝒘𝒋 = 𝟏 for all cells. By changing the weighting function 𝒇𝒘, cells close to the 

reference cell 𝒌 can have a stronger influence on its overall connectivity, while cells far from it 

have a lower effect. This can be modeled as an inverse distance weighting function (Eq. 3.2): 

 

where 𝒅𝒋,𝒌 indicates the distance from the upstream cell 𝒋 to the reference cell 𝒌, while 𝜶 and 𝜷 

are parameters. The tuning of the weighting function can depend on hydrologic considerations 

about the correlation scale for runoff dynamics, or else on empirically finding the optimal 

formulation among alternatives for the connectivity-based urbanization index (for different 𝒇𝒘 

functions) that, for example, maximizes its predictive power in peak-flow regression models. 

Translating all of this into equations, we obtain new formulations for the upslope variables: 
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where �̅�𝒌
∗  and �̅̅̅�𝒌

∗  are starred to indicate that they are now weighted averages, instead of 

arithmetic averages as in the traditional formulation given by Eq. (2.1). Clearly, the expressions 

for �̅�𝒌
∗  and 𝑾𝒌

∗  depend on the formulation 𝒇𝒘 chosen for performing the weighted averaging.  

The resulting, new hydrologic connectivity index, 𝑯𝑪𝑰, takes the expression given by Eq. (3.5): 

 

In practical terms, a georeferenced raster of 𝑯𝑪𝑰 values can be obtained from a basin’s digital 

elevation model (DEM), together with LC and HSG raster maps (Fig. 3.3), once a choice has been 

selected for the weighting function 𝒇𝒘. All computations are performed in a GIS environment. 

Computational aspects regarding the connectivity index 
Generalizing the new formulation of the connectivity index (Eq. 3.5), where the characteristics 

of the upslope component are obtained as weighted averages, necessitates, at some steps, 

executing operations that cannot be performed using conventional GIS software, because of 

the lack of a suitable set of GIS functions for computing �̅�𝒌
∗  and �̅̅̅�𝒌

∗ . This is because the weights 

assigned to the basin cells when aggregating information for the upslope component 𝑫𝒖𝒑,𝒌 at 

each point 𝒌 depend on the location, which means that there are virtually as many sets of 

weights as the number of basin cells, and each weight, given a generic reference cell 𝒌 (refer to 

the scheme in Fig. 3.4), must be determined from the distance from the upstream cell 𝒋 to the 

reference cell 𝒌 for which 𝑫𝒖𝒑,𝒌 is being computed at the given iteration. 

For operations that could not be run with traditional GIS, we generated our own algorithm (see 

Algorithm 3.1 and Figs. 3.5 and 3.6), implementing it functionally into a Python program. 

Algorithm 3.1 summarizes the operations performed in the first step, to derive the set of raster 

maps of upslope contributions from different distances. The algorithm function takes as input 

the number of rows (𝒚𝑺𝒊𝒛𝒆) and columns (𝒙𝑺𝒊𝒛𝒆) of the DEM model, the raster 𝒓𝑾 of weighting 

coefficients (obtained either as a function of 𝒏 or CN), the raster of slopes, 𝒓𝑺, and the flow 

direction raster 𝒓𝑭𝑳𝒐𝒘𝑫𝒊𝒓 (obtained using the D8 algorithm). It should be noted that all the 

input raster maps can be derived from the basin DEM using any traditional GIS software. We 

recommend preliminary preprocessing of the DEM to remove any local depressions. 

Note that a dynamic indexing is used in Algorithm 3.1 to keep track of the contributions of 

upstream cells across the basin, one step at a time. In the first iteration, each basin cell is 

assigned a unique id (see Fig. 3.5), and all these ids are stored in the 𝒓𝒂𝒔𝒕𝒆𝒓_𝒊𝒅 raster variable. 

A second raster, 𝒅𝒆𝒔𝒕_𝒊𝒅, is produced from the 𝒓𝑭𝒍𝒐𝒘𝑫𝒊𝒓 raster, which stores, for each cell, the 

id of the next adjacent cell (i.e., the id of the destination cell), based on the D8 algorithm. The 

contributions of upstream cells distant only one cell from the reference point are identified by 

comparing the ids stored in 𝒓𝒂𝒔𝒕𝒆𝒓_𝒊𝒅 and 𝒅𝒆𝒔𝒕_𝒊𝒅. Specifically, a given cell at location [𝒊][𝒋] of 

the basin DEM, with a certain id stored in 𝒓𝒂𝒔𝒕𝒆𝒓_𝒊𝒅[𝒊][𝒋], takes its 1-cell-distant contributions 

from those cells of the basin [𝒌][𝒍] for which the id in the 𝒅𝒆𝒔𝒕_𝒊𝒅[𝒌][𝒍] is the same as in 

𝒓𝒂𝒔𝒕𝒆𝒓_𝒊𝒅[𝒊][𝒋]. 
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Figure 3.3. Break-down of the sequential GIS operations needed to derive a raster of the connectivity 
index from DEM, LC, and HSG maps. 
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Figure 3.4. Generic reference cell k and its upstream drainage area, delimited by thick edges. Arrows 
show flow directions, while the flow path for a generic upstream cell j is noted with bold arrows. 

Algorithm 3.1. Pseudocode of the algorithm to obtain raster files “W_distance*” and “S_distance*” for 
different distances (in number of cells). Each raster provides the cumulative W and S at each cell, taken 
from all the cells located at a fixed distance upstream of it. E.g., “W_distance3” provides the cumulative 
weighting coefficients for all upstream cells that are 3 steps away from reference cell k.  

 

 

Each subsequent iteration works similarly, with the difference that the 𝒅𝒆𝒔𝒕_𝒊𝒅 raster of the 

previous iteration becomes the 𝒓𝒂𝒔𝒕𝒆𝒓_𝒊𝒅 of the current iteration, in order to consider all the 

2-cell-distant contributions in the 2nd iteration, all the 3-cell-distant contributions in the 3rd, and 

so on. When the flow paths on the hillslope component have all been completed, all cells of 

𝒓𝒂𝒔𝒕𝒆𝒓_𝒊𝒅 at the current iteration will have the initialization value of -1, and the algorithm stops.  

To avoid repeated computations of the connectivity raster for varying weighting functions while 

fine-tuning its parameters by trial-and-error, we break down the procedure in two steps, as 

outlined in Fig. 3.6. We first derive a series of rasters of the basin, each providing the cumulative 

𝑾 and 𝑺 of upstream cells from a distance of 1, 2, etc., cells from the reference. Second, we 

compute the weighted averages to obtain �̅�𝒌
∗  and �̅̅̅�𝒌

∗  for different weighting functions 𝒇𝒘(𝒅𝒋,𝒌). 

Note that the contributions (from different distances) stored in each raster file from the first 

step (Fig. 3.6) are not weighted yet; hence, these computations are performed only once. This 

is helpful because these are so computationally intense, that they must run in the High-

Performance Computing (HPC) infrastructure at UofM. We parallelized these operations by 

running the computation of each individual raster of contributions on a different CPU (i.e., the 
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repeat loop in the Algorithm 3.1 pseudocode is parallelized). On the contrary, the weighted 

summation of raster maps in step 2, to obtain �̅̅̅�𝒌
∗  , can be easily performed on a single CPU.  

 

Figure 3.5. Explanation of the dynamic indexing adopted in Algorithm 1 to keep track of the 
contributions of upstream cells across the basin, one step at a time. An arbitrary flow direction raster 
(indicated by the arrows) is assumed. 
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Figure 3.6. Scheme of the procedure to optimize the use of computational resources while calculating 
the upslope component for a range of weighting functions 𝒇𝒘(𝒅𝒋,𝒌). Operations to obtain the raster of 
contributions from different distances (expressed in number of cells) are performed on a HPC, while 
the weighted summation considering different weighting functions can be done on a traditional 
computer. 

3.3 Formulating a new connectivity-based urbanization index 

From the methods proposed in Section 3.2, an Urbanization Index for the generic reference cell 

𝒌 can be defined as follows: 

 
The right-hand side of Eq. (3.6) is the ratio of the connectivity 𝑯𝑪𝑰𝒌 of the actual basin at cell 𝒌 

to that of a virtual basin with the same relief and stream network but totally impervious surfaces, 

which would have the highest potential connectivity 𝑯𝑪𝑰𝒊𝒎𝒑,𝒌. This approach recalls the runoff 

coefficient concept, the proportion of total precipitation that becomes effective rainfall and 

thus contributes to runoff, net of infiltration or other losses. Thus, the runoff coefficient 

denotes that rainwater that actually becomes runoff, relative to the maximum runoff that could 

be potentially achieved if infiltration and other losses were negligible. Similarly, the ratio of the 

connectivity of the actual basin cell to that for the totally impervious, virtual copy, provides a 

relative measure of the actual basin connectivity, as compared to the ideal connectivity that 

would maximize runoff and thus peak flow, of a basin with impervious areas and the smoothest 

possible travel paths towards the stream network. However, while the runoff coefficient is a 

lumped quantity defined for an entire watershed, the urbanization index of Eq. (3.6) is specified 

for each hillslope cell, so that it can be regarded as a distributed watershed property.  

A lumped urbanization index can be obtained by averaging all the connectivity ratios over the 

basin (Eq. 3.7). It should be noted that the connectivity index considers how far each hillslope 

cell is from its nearest pour point on the stream network, but does not account for the cell’s 

relative location with respect to the basin outlet. To address this limitation, a weighting function 

𝒇𝒘,𝑼𝑰(𝒅𝑺𝑵𝒌) can be introduced in the definition of the lumped urbanization index. If we indicate 

as 𝑺𝑵𝒌 that stream network cell where reference cell 𝒌 finally pours to, and as 𝒅𝑺𝑵𝒌 the travel 

distance from cell 𝑺𝑵𝒌 to the basin outlet, following the stream network (see Fig. 3.7), the weight 

𝒇𝒘,𝑼𝑰(𝒅𝑺𝑵𝒌) given to cell 𝑘 as a function of the distance of 𝑺𝑵𝒌 to the basin outlet would allow to 

consider greater contributions from those cells that drain to the network closer to the basin 

outlet, and smaller contributions from cells that pour to stream segments further upstream. 

This allows to differentiate cells depending on their location relative to the basin outlet. 

 
The tuning of the weighting function 𝒇𝒘,𝑼𝑰(𝒅𝑺𝑵𝒌) could be based on hydraulic considerations 

about the travel speed of flood waves along the stream network, or else could be empirically 

derived by optimizing the predictive power of the urbanization index 𝑼𝑰 when including it as 

an explanatory variable while obtaining regression-based urban peak-flow equations. 
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Testing the predictive power of the new urbanization index 
We test the predictive power of the new index UI against the percentage of impervious area 

(IA), when both are included as alternative proxies for the degree of urbanization in regional 

regression equations for peak flow estimation in urban basins. As first case study, we consider 

a regional model for Missouri (Southard, 2010), where 35 urban basins were selected, based 

on criteria related to (i) minimum length of peak flow records of at least 9 yrs, (ii) a relatively 

stable level of urbanization within the timeframe for which there were flow data, (iii) no major 

river diversions, and (iv) minimal presence of retention ponds, to ensure a hydrologic response 

that mainly reflects surface runoff dynamics. The basins cover a range of sizes from a few to 

some hundred square kilometers, with IA ranging from a few percentage points to almost 50%. 

Their regression equation for QT, the peak flow with return period T, takes the expression:  

 

where A is the basin area and IA the percentage of impervious areas, while β0, β1, and β2 

represent model parameters. Since Eq. (3.8) is linear in logarithm form, the model coefficients 

can be determined by the ordinary least squares (OLS) regression method. 
 

 

Figure 3.7. Scheme depicting the stream network component 𝒅𝑺𝑵𝒌 of the total distance from generic 
cell 𝒌 to the basin outlet, which is used for weighting that cell when aggregating all information into 
the lumped, connectivity-based urbanization index 𝑼𝑰 (Eq. 3.7). Water from cell 𝒌 first reaches the 
stream network at cell 𝑺𝑵𝒌 through a path along the hillslope component, and then continues its travel 
to the basin outlet along the channel. The distance 𝒅𝑺𝑵𝒌 is measured from cell 𝑺𝑵𝒌 to the outlet. 

 

3.4 Studying land-cover effects using data-driven, continuous rainfall-

runoff models 
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It is sensible to posit that different portions of a basin may have hierarchically different effects 

over its response under a given rainfall input, depending on aspects such as their proximity to 

the stream network and the basin’s outlet (Dell’Aira et al., 2022), as well as the land-cover (LC) 

type and arrangement of upstream drainage areas, as determined by the surface topography; 

the LC type affects the infiltrability (or imperviousness) levels as well as the runoff travel times, 

while the size of the upstream draining areas determine potential local runoff volumes. 

Identifying those portions of a basin that have a stronger impact in determining variations in 

the peak flow at the outlet, under different localized rainfall inputs, may help explain the effects 

that different LC types, as well as their changes, have on hydrologic response. By training a 

universal, data-driven function approximator (e.g., an artificial neural network model; Hornik 

et al., 1989; Schäfer & Zimmermann, 2006) to continuously simulate how spatially distributed 

rainfall inputs are converted into runoff at the outlet, we can investigate the changes in model 

performance under different combinations of rainfall input. We can also test whether a partial, 

incomplete depiction of the overall rainfall, considering only some portions of the basin, would 

provide enough information to match the performance of a benchmark model trained with the 

full precipitation information. If that is the case, then the watershed portions with the highest 

predictive power in the model will be those with the strongest influence on the basin’s 

hydrologic response. In other words, if a universal function approximator is able to map rainfall 

inputs at those basin locations into outlet discharge with satisfactorily high accuracy, then it 

must mean that the watershed’s response is mostly affected by such portions of the watershed. 

We believe that an LSTM model is most suited for this purpose, given its ability to learn time 

patterns in the input time series (see Chapter 2). Specifically, it can adapt the rainfall-runoff 

simulation to the current antecedent soil moisture (ASM) conditions, as these are determined 

by prior precipitation patterns. In this way, analyzing those portions of the basin where rainfall 

inputs yield the highest predictive power will provide insights into the effects of land cover and 

spatial proximity to the stream network and outlet, net of ASM influences. 
  

3.5 Uncertainty and biases in hourly and sub-hourly extreme rainfall 

It is of interest to derive urban peak flow equations that have rainfall as a variable, so they can 

reflect future changes in design precipitation values. Because of this, we were interested in 

better assessing as-of-yet little explored potential sources of uncertainty, as well as potential 

biases, when estimating extreme rainfall quantiles, i.e., DDF-IDF values. We briefly discuss the 

methods used for preliminary assessment of the effects of rain gauge density, and then explain 

how gauge resolution introduces underestimation. It is important to note that not only does 

the Southeastern U.S. have a low density of rain gauges, but most of these measure rainfall at 

15-min clock intervals. Thus, we can only explore these effects by using data from locations 

with much higher station densities and temporal resolutions. The German data we use come 

from a network with a density that is 17 times larger than that in the Southeastern U.S., allowing 

us to simulate the effects of estimating DDF-IDF values with sparse rain gauge networks. Of 

course, there are no tropical cyclones or storms in Germany, but they do get a mixture of 

convective and frontal precipitation events, as is the case in large parts of the U.S. 
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Effects of station density 
To address the research gaps identified in Section 2.6 (sub-section on “Effects of rain gauge 

density”), we take advantage of high temporal-resolution data (1-min) from Germany, from a 

network with a noticeably higher spatial resolution than in the U.S. (about 17 times higher). We 

aim to fill this research void by simulating numerous scenarios for networks with low rain-

gauge density, randomly drawn from this high-resolution data. Through this approach, we 

intend to quantify the uncertainties and possible biases that arise in DDF values due to lower 

rain gauge densities. 

Precipitation Data 
We obtained rainfall data at 1-min resolution for 1093 German stations operated by the 

German Weather Service (DWD), from their website Wetter und Klima - Deutscher Wetterdienst 

- CDC (Climate Data Center) (dwd.de). Most stations start after 2000, and the gauge with the 

longest record covers from 2001 to 2021. Since our main goal relates to the effects of station 

density, we do not want to discard too many stations from the analysis by imposing too strict 

conditions on record length. Therefore, we optimized the available number of stations given 

the lengths of their record, considering the same study period for all stations. Eventually, 862 

stations with a common record period from the start of 2009 to the end of 2021 (13 years) were 

selected for the analysis. The map with the locations of the 862 rain gauges is shown in Fig. 3.8. 

 

Figure 3.8. Map of the study area (Germany), depicting the 862 weather stations with concurrent 
rainfall data at 1-minute temporal resolution for the 13-yr long period from 2009 to 2021. 

Regional frequency analyses 
We first extracted independent events from the 1-min time series, using a minimum inter-event 

time of 3 hours as criterion. The maxima for durations of 10, 20, 30, 45 min, 1,1.5 and 2 h were 

then extracted for each storm. We attempt as closely as possible to mimic regional frequency 

analyses used in Atlas 14, to better understand how the low density of rain gauges in Tennessee 

(and the U.S.) could be affecting DDF estimates; hence, we used the region of influence (ROI) 

https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html
https://www.dwd.de/EN/climate_environment/cdc/cdc_node_en.html
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approach (Burn, 1990) to determine homogenous areas. Each gauge is surrounded by a unique 

homogeneous region (HR); we arbitrarily adopted a 60 km (37.3 mi) radius for the ROI. Thus, 

for each of the study gauges, we assumed that any weather station within 60 km belongs to 

the HR for that particular gauge, so we can pool their data to estimate the regional probability 

distribution parameters at that site. Given the number of stations and the size of Germany, 

there are on average 27.3 gauges per ROI, when using the full density of weather stations. Then, 

for each duration of interest, we combined the time series of event maxima of all stations in 

the ROI, obtaining a long series of maxima (on average, 354 years long), and then we extracted 

the partial duration series (PDS) for the region from this series. On average, we took four values 

from each year to create the PDS for each ROI. The lengths of the PDSs for the different ROIs 

are variable, as they depend on the actual number of stations in each one of them.  

We adopted the Generalized Pareto (GPA) distribution to fit the PDSs obtained for each gauge’s 

ROI, as well as to perform at-a-site frequency analyses for each gauge. We used a POT approach, 

as the short records precluded AM. There are two sets of PDSs: those for each of the 862 gauges, 

with 52 values (13 yrs. x 4 events per yr on average), as well as that for each ROI, with a variable 

size depending on gauge numbers. As we are interested in the effects of station density, we 

generated results for the following percentages of the original gauge density: 10, 20, 30, 40, 50, 

60, 70, 80, 90, 95, and 100%. For each density, we sampled 100 possible realizations of the 

network, with replacement. Altogether, we thus computed 10 (densities strictly smaller than 

100%) x 7 (durations) x 100 + 7 = 7007 realizations, across all different station densities.  

Now, given a density, for each duration of interest and each realization, we extracted the PDS 

for each ROI, computing the L-moments and the GPA shape parameter for that ROI. Then, a 

regional flood frequency analysis was performed, using the regional shape parameter along 

with the normalized location and scale parameters (from the corresponding at-a-station PDS), 

obtaining normalized DDF values for different return periods. Finally, the index flood procedure 

(Dalrymple, 1960) was implemented, multiplying the normalized DDF values by the mean of the 

at-a-station PDS, to get the estimate of the regional DDF value for each gauge. Similarly, for 

each duration, we obtained the DDF values for each station for all other network realizations. 

In this study, we consider that our DDF values calculated at each site using a regionalized shape 

parameter derived from the ROI at 100% station density are “correct.” To assess the potential 

bias caused by variations in station density, we then computed the percentual difference 

between each DDF value obtained for lower densities and the corresponding “correct” DDF 

value. As a result, we generated 100 DDF-difference values (in %) for each station, specific to 

each combination of return period, duration of interest, and station density. 

Bias due to the temporal resolution of the rain gauges 
For this work (Meier et al., 2022; Marasini et al., 2023; Meier et al., 2023), we basically 

reproduced the approach followed by Muñoz et al. (2018) and Meier et al. (2019) for the 10-min 

Swiss rainfall data, but now using 1-min resolution rainfall data for 862 weather stations across 

Germany. The raw 1-min data were checked for consistency and corrected, when needed, 

based on the quality controlled 10-min data. To perform frequency analyses based on partial 

duration (POT) series, independent events needed to be determined at each gauge. Based on 

the corrected 1-min series and using a minimum inter-event time of 3 hours, we separated all 

storms at each location, before extracting the “true” rainfall minima for each storm, for 
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durations of 5, 10, 15, 20, 30, 45, 60, 75, 90, and 120 minutes. This was done by using a sliding 

time window, moved “continuously,” 1-min time step at a time. Then, the corrected 1-min time 

series were aggregated over fixed durations for totalization periods of 5, 10, 15, 20, 30, and 60 

minutes, to mimic the data that would be generated at a typical gauge that totalizes over fixed, 

clock-time windows. To estimate the at-a-station variability of SAFs, we introduced a novel 

resampling methodology, whereby the start time of the series was successively moved by 1-

min steps before totalizing. For example, when aggregating the 1-min time series into fixed 15-

min series, we totalized the original, “continuous” series in 15 different ways. The resulting 

maxima are different according to how the 1-min data totalized, adding up to different series 

for frequency analysis, and thus in different DDF values for the given duration and return 

period. In this way, dividing the single “true” DDF value by each one of the fixed DDF values, we 

were able to generate a sample of SAFs, for every combination of rainfall duration and 

totalization time, which allowed us to understand the at-a-station variability. 

After computing SAFs at each site, for all possible combinations of duration, totalization time, 

and way of totalizing, we analyzed their at-a-station variability (mean, median, range, skewness, 

distribution), pooled statistics, as well as their spatial structure, using simple geostatistical tests.  

 

3.6 Methodology for correcting AM-based frequent flood estimates 

Let us consider the average interarrival time (AIT) 𝑻 and the corresponding quantiles 𝑸𝑨𝑴(𝑻) 

and 𝑸𝑷𝑶𝑻(𝑻), obtained from the inverse cumulative distribution functions (CDFs) for the annual 

maxima (AM) and peaks-over-thresholds (POT) series, respectively. Their ratio (Eq. 3.9), which 

from now on we term the “quantile ratio” (Dell’Aira et al., 2023), is a measure of the under-

estimation of the 𝑻-year flood from AM frequency analysis (AM-FA), given that the actual 

frequency of frequent floods is better reflected by the POT-based estimates (Karim et al. 2017).  

 

𝑸𝑨𝑴(𝑻) is smaller than 𝑸𝑷𝑶𝑻(𝑻) for small 𝑻s and becomes closer to 𝑸𝑷𝑶𝑻(𝑻) for increasing 𝑻s, 

as a direct consequence of the principles behind Langbein’s (1949) equation (Dell’Aira et al., 

2023). Hence, 𝒓(𝑻) must be smaller than 1, theoretically (i.e., ignoring any sampling variability 

effects). From 𝒓(𝑻), the percentage of underestimation introduced by using AM instead of POT 

to derive frequent flood quantiles can be derived as shown in Eq. (3.10) (Dell’Aira et al., 2023): 

 

Adopting the Generalized Pareto (GP) distribution (with shape, scale and location parameters 

𝝃𝒑, 𝝈𝒑, and 𝝁𝒑,respectively) for modeling the POTs and the Generalized Extreme Value (GEV) 

distribution (with shape, scale and location parameters 𝝃𝒈, 𝝈𝒈, and 𝝁𝒈, respectively) for 

modeling the AM (see Dell’Aira et al., 2023, for the theory and reasons behind such choices), 

the inverse CDFs are given by the following Eqs. (3.11) and (3.12) (Dell’Aira et al., 2023):  



 

 
37 

 
 

 

If we also assume that the number of exceedances follows a Poisson process (Wang & Holmes, 

2020; Pan et al., 2022) then, applying the Total Probability Theorem (Dell’Aira et al. 2023) and 

the consequent duality property between the GP and GEV distributions (Wang and Holmes 

2020; Prosdocimi & Kjeldsen, 2022), we can reparametrize the quantile 𝑸𝑷𝑶𝑻(𝝃𝒑, 𝝈𝒑, 𝝁𝒑, 𝝀, 𝑻) in 

Eq. (3.12) using the GEV-parameters, obtaining an expression for the POT-based quantile 

𝑸𝑷𝑶𝑻(𝝃𝒈, 𝝈𝒈, 𝝁𝒈, 𝑻) function of the parameters of the AM distribution (Dell’Aira et al., 2023). This 

allows to rewrite the quantile ratio as a function of the GEV parameters, as in Eq. (3.13):  
 

 

The underestimation �̂�(𝝃𝒈, 𝝈𝒈, 𝝁𝒈, 𝑻) of the 𝑻-year event using the duality-derived quantile ratio 

in Eq. (3.13) can be obtained replacing �̂�(𝝃𝒈, 𝝈𝒈, 𝝁𝒈, 𝑻) into Eq. (3.10) (Dell’Aira et al., 2023).  

As the GEV parameters can be easily obtained by performing an AM-FA, the duality-derived 

quantile ratio �̂�(𝝃𝒈, 𝝈𝒈, 𝝁𝒈, 𝑻) can be used to correct the biased estimates of the 𝑻-year quantile 

from AM-FA, without the need to actually perform POT frequency analyses. Specifically, the 

unbiased 𝑻-year quantile 𝑸𝑷𝑶𝑻
∗ (𝑻) is derived from the following Eq. (3.14).  

 
Eq. (3.13) can be used to investigate how the distribution parameters affect the under-

estimation. In turn, as climate and basin descriptors determine the distributions of floods, the 

physical drivers of frequent flood underestimation can be elucidated (Dell’Aira et al., 2023). 
 

3.7 Urbanization trends across Tennessee 

Urbanization trends are studied using the National Land-Cover Database (NLCD; Homer et al., 

2020), available for the entire CONUS at a resolution of 30 by 30 m, for the years 2001, 2004, 

2006, 2008, 2011, 2013, 2016, 2019, and 2021. These land-cover maps provide information on 

a variety of LC types, including developed land, expressed at four different levels of 

urbanization: “developed open space,” “developed low intensity,” “developed medium intensity,” 

and “developed high intensity,” corresponding to increasing ranges of IA. E.g., “developed open 
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space” patches display a percentage of IA ≤ 20%, while “developed high intensity” indicates any 

basin cell with a percentage of IA > 80%, and potentially up to 100% (i.e., totally impervious).  

To decrease the computational burden, national raster maps for each year were preliminarily 

clipped on the territory of Tennessee, in a GIS environment. Because our project was conducted 

separately from the USGS (in contrast with the original intentions) and they have not yet 

defined a case-study subset of Tennessee urban watersheds, we considered all basins at the 

HUC-12 scale (see Fig. 4.5) from the Watershed Boundary Dataset (WBD) defined by the USGS 

(Jones et al., 2022). The state of Tennessee contains 1147 HUC-12 watersheds overall. From 

these, we identified all the urbanized basins, considering a threshold of IA of 10% by year 2021 

(i.e., the last year with LC data available at the time this report was written), and studied their 

urbanization trends in the previous 20-year period, from 2001 to 2021.
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Chapter 4 
This chapter presents the deliverables that were agreed upon for this project in the proposal, 

lays out the main results and findings of the research as related to the different tasks, sub-tasks, 

and corresponding deliverables, and lists which sub-tasks were either not pursued or were 

pursued but only in a preliminary fashion, explaining the reasons. Finally, we briefly propose 

additional research ideas directly ensuing from the present findings that could be conducted in 

the future, considering their high potential impact on current engineering practice. 

Again, as explained in Chapter 1, UofM’s broader mandate included researching novel ideas with 

the potential for transformative or paradigmatic change in our understanding of urban peak 

flows and their prediction for engineering purposes, with a secondary focus on Tennessee and 

the Southeastern U.S. Later, the USGS ended up being fully tasked with generating the updated 

set of peak flow equations, so that some of the UofM sub-tasks and deliverables that were initially 

included in the proposal became moot, as they would not be needed by the USGS for their work.  

Moreover, our preliminary research results strongly suggested that some of the initial ideas we 

proposed (mainly the new urbanization index and some of the aspects related to extreme rainfall 

analysis) showed more prospects for successful application to engineering practice. Accordingly, 

as was periodically informed through the Quarterly Progress Reports for the project, more effort 

was placed on these promising ideas than originally accounted for in the proposal, which resulted 

in decreasing the time allocated to some of the other sub-tasks that were initially considered. 

Table 4.1 provides a list of the research deliverables of this project, according to the original, 

approved proposal, with comments and a summary of important findings. 

 

Table 4.1. List of deliverables of the project according to the original proposal. 

Task 

Task

# 

Deliverable Key Findings and Notes 

1 Database compiling 
all publicly available 
streamflow and 
stage data for urban 
streams in TN and 
surrounding areas of 
neighboring states 
 

• USGS task 
• The notion of using stage data together with rainfall records for 

documenting basin lag was not pursued further 

2 Trend analysis of 
extreme point 
rainfall, for different 
durations, at stations 
in (and near) TN 

• After noting quality issues with the 15-min COOP rainfall data, we only 
performed a preliminary analysis of trends in extreme rain frequency, for 
the Southeastern U.S., presented in Section 4.1 

• For all durations (except 24 h), many stations show an increased frequency 
of extreme rainfall events; for durations ≤ 6 h, 18 to 27% of the gauges 
display a significant increase in numbers of extreme storms 

• Regarding the two other issues that we studied, related to extreme rainfall, 
we find that:  
(i) Low rain gauge densities seem to cause a slight negative bias when 

estimating DDF values; more importantly, they do result in much 
increased uncertainty;  

(ii) Totalizing rain every 15 min (as with COOP gauges) causes a mean SAF 
slightly above 1.15 when estimating the 15-min DDF values, but there is 



  

 
40 

high variability: the 75th percentile of SAFs is almost 1.18 (7.2% more 
than the 1.10 fixed value used in Atlas 14), the 95th percentile is 1.22, 
and many stations display SAFs above 1.20, up to 1.30. There is less bias 
when estimating the 30-min DDF values with 15-min data (sampling 
ratio = 2): the mean SAF is 1.04, the 75th percentile 1.05, and the 95th 
percentile 1.06, which compare well with the 1.05 value used in Atlas 14, 
but again this varies across gauges: many stations have SAFs above 1.07 
or 1.08, with a maximum of 1.10. Results are presented in Section 4.1. 
 

3 Analysis of temporal 
progression in 
urbanization trends 
across TN 
 

• For most urban basins in Tennessee, we observed clear increases in the 
percentage of IA, with rates ranging from less than +0.1% to up to +0.7% 
per year, in the period from 2001 to 2021. More details in Section 4.2. 

 

4 Detailed analysis of 
urbanization effects 
on flood regimes, at 
the scale of the 
rainfall-flood event, 
across TN 
and neighboring 
urban areas 

• We propose a new, connectivity-based descriptor of urbanization, UI, 
which outperforms the traditional % impervious area, IA. This lumped 
watershed-scale descriptor of the hydrologic effects of urbanization 
shows promise for inclusion as an explanatory variable in regression 
equations for urban peak flows. See Section 4.3. 

• We derive a new methodological approach for studying the effects of 
changes in land-cover net of precipitation trends using LSTM neural 
network models. Details in Section 4.4. 

 

5 A final report 
documenting all 
findings 
 

• Present document 

6 Implementation of 
regression equations 
and geospatial data 
required to calculate 
basin characteristics 
into the StreamStats 
web application. 
 

• USGS task. 
• Our new connectivity-based urbanization index UI (Section 4.3) can 

support the development of new regression equations. 
• We are in continuous contact with the USGS StreamStats team, discussing 

the best ways to implement the urbanization index. 

 

4.1 Trends in the frequency of extreme precipitation 

Fig. 4.1 depicts the numbers of rain gauges in the Southeastern U.S. associated with different 

kinds of trends in extreme rainfall frequency, for each duration of interest, as obtained from 

applying the Mann-Kendall (M-K) test; Fig. 4.2 shows the same results focusing on Tennessee 

gages. We only display M-K test results, as they are very similar to those derived with OLS.  

It can be seen that the number of gauges with increasing trends (both increasing or significantly 

increasing) is about 10 times larger than that displaying decreasing trends. Out of 473 stations, 

36 % show increasing trends in frequency for the 15-min event, a value that gradually decreases 

to 14% for the 24-h duration. This suggests that the frequency of short-duration maxima is 

increasing at more sites than that of longer-duration events. The number of stations with a 

decreasing or significant decreasing trend is small, never exceeding 4.0% of the gauges, and 

shows no effect of duration. Again, given the data quality issues, we did not analyze trends in 

the magnitude of extreme rainfall, even though this is highly relevant for practice. 

A careful look into the data for durations larger than 9 hours reveals that most of the values in 

the series are 0, especially for 18 and 24 h. This is because long storms are much rarer than 

short-duration events in this part of the U.S.  
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Because of this, our series for durations > 9 h were not long enough to be able to capture any 

trend in the frequency of events exceeding the 90th percentile maxima. This implies that results 

from Figures 4.1 and 4.2 for durations larger than 9 h are less credible.  

 

Figure 4.1. Trends in extreme event frequency from M-K test at 473 Southeast U.S. rain gauges for 
both ASOS and COOP networks. For each duration, the blue bar shows the number of stations with 
significant increasing trend, the orange bar depicts stations with increasing trend, the green bar shows 
decreasing trends, and the red bar shows those stations with decreasing trend.  

 

 

 

Figure 4.2. Trends in extreme rainfall frequency at both ASOS and COOP networks for Tennessee, 
from M-K tests.  
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For each duration, the blue bar shows the number of stations with significant increasing trends, the 
orange bar depicts gauges with increasing trend, and the green bar shows those stations with 
significant decreasing trend.  

In Tennessee, Fig. 4.2 highlights that among the 44 gauges in the state (9 ASOS/35 COOP), only 

a single one exhibits a significant negative trend in extreme rainfall frequency, for a duration 

of 18 h. However, this observation is disregarded due to earlier considerations about the lack 

of data for durations > 9 h. Overall, 35-45% of the stations exhibit a consistent increasing trend 

across various durations. Consequently, we can assert with high confidence that the frequency 

of extreme precipitation is increasing in Tennessee, at least for durations ≤ 9 h. 

In turn, Fig. 4.3 depicts the spatial distribution of these trends across the Southeastern U.S., for 

the shorter durations relevant to urban hydrology (and for which trends were assessed with 

more power, as explained above). Most gauges with decreasing trends occur in Louisiana and 

Southern Arkansas. The stations with either no trend or with increasing trend follow a similar 

spatial pattern across durations. They are more numerous and more randomly distributed than 

those with decreasing trends, but there is still a noticeable spatial trend towards more 

significant increases in frequency as one moves inland, which should be a cause of concern. 
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Figure 4.3. Maps depicting spatial trends in extreme precipitation frequency at 473 stations in the 
Southeastern U.S., for different durations. The color scale is as follows: significantly increasing = blue, 
increasing = green, no trend = grey, decreasing = orange, significantly decreasing = red. 

The spatial distribution of trends in the frequency of extreme storms in Tennessee is depicted 

in Fig. 4.4. Again, across the 572 combinations of durations (13) and stations (44), the vast 

majority either reflects no trend (65%) or else increasing trends (34%), with no clear spatial 

pattern. Only one gauge shows significant decrease, for a single long duration of 18 h.  
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Figure 4.4.  Map depicting spatial trends in extreme rainfall frequency at 44 gauges in Tennessee, for 
a range of durations from 15 min to 24 h. The color scale is as follows: significantly increasing = blue, 
increasing = green, no trend = grey, decreasing = orange, significantly decreasing = red.  

4.2 Urbanization trends across Tennessee 

Fig. 4.5 depicts Tennessee with its 1147 HUC-12 basins (Jones et al., 2022). We highlighted all 

the urbanized watersheds (using the criterion outlined in Section 3.7) using a red boundary. 

These are mostly clustered at a limited number of locations across the state. The largest groups 

correspond to the major metropolitan areas of Memphis, Nashville, and Knoxville, moving from 

West to East. Besides these major clusters, there are a few smaller ones mostly along the state 

boundaries, associated with the cities of Clarksville, Chattanooga, Kingsport, and Johnson City. 

There are also a few isolated urban watersheds, e.g., the city of Jackson, as well as the cities of 

Cookeville, Crossville, and McMinnville, between Nashville and Knoxville. 

 

 

Figure 4.5. HUC-12 basins in TN, from the Watershed Boundary Dataset (Jones et al., 2022). Urbanized 
watersheds (i.e., those with IA above 10% in 2021), are marked with red, thicker boundaries.  

Fig. 4.6 and Table A1 in the Appendix show the urbanization trends for all developed Tennessee 

watersheds. Most basins experienced a significant increase in their percentages of impervious 

surfaces (IA), in the 20-year period from 2001 to 2021, with an average overall increase of +6% 

(which corresponds to an average growth rate of 0.3%/year). However, it is important to note 

that there is a large heterogeneity in the initial (2001) conditions; most basins started with IA 

below 20%, only a few between 30% and 40%, and just two were already above 40% in 2001. 

By 2021, the number of watersheds with IA > 40% had doubled. It is interesting to note that no 

urban watershed in Tennessee shows a decrease or stagnation in IA.  

 

Fig. 4.7 shows the time-averaged changes in 

urbanization (as a rate in IA per year) for each developed 

basin, over the period 2001-2021. The observed average 

rates of increase in the level of urbanization in 

Tennessee span one order of magnitude, from minima 

below +0.1%/year (i.e., about +2% IA over the complete 

period of observation) up to about +0.7%/year (i.e., 

Most developed basins in 

Tennessee experienced a 

significant increase in their 

percentages of impervious 

surfaces, in the 20-year period 

from 2001 to 2021. 
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about +13% in the 20-year observation period). Many of the basins with the largest changes are 

located away from the center of the metropolitan areas, i.e., they correspond to suburban 

areas that have been experiencing significant urban expansion lately. 

 

 

Figure 4.6. Urbanization trends in HUC-12 basins in Tennessee with IA above 10% by 2021.  

 

 

Figure 4.7. Annual rate of increase in the level of urbanization in developed Tennessee watersheds 
from Fig. 4.5, expressed in increase of the percentage of IA per year. 
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4.3 Benchmarking the new connectivity-based urbanization index 

We test the new connectivity-based index of urbanization 𝑼𝑰 (Eq. 3.6) for two different 

expressions of the weighting coefficient 𝑾 in the 𝑯𝑪𝑰 formulation (Eq. 3.5), i.e., 𝑾 = 𝟏 − 𝒏 (from 

existing literature; see Chapter 2) and 𝑾 = 𝑪𝑵/𝟏𝟎𝟎 (proposed in this research work; Eq. 3.1). 

We also consider a hybrid formulation where the weighting coefficient of the upslope 

component 𝑫𝒖𝒑 is obtained as 𝑾 = 𝑪𝑵/𝟏𝟎𝟎, while the Manning-based coefficient 𝑾 = 𝟏 − 𝒏 is 

adopted for the downslope component 𝑫𝒅𝒏.  

We consider two alternatives for the weighting function 𝒇𝒘(𝒅𝒋,𝒌) needed for deriving the 

weighted-average terms �̅̅̅�𝒌
∗  and �̅�𝒌

∗  in the upslope component 𝑫𝒖𝒑 (Eqs. 3.3 and 3.4), outlined 

in Fig. 4.8. Table 4.2 shows the labels used for each combination of 𝑊 and weighting  𝒇𝒘(𝒅𝒋,𝒌). 

 

Figure 4.8. Two different weighting functions for the upstream cells when computing the upslope 
component 𝐷𝑢𝑝. Cells further upstream receive smaller weights. 

 

Table 4.2. Labels for experiment identification, for different combinations of 𝑊 and 𝑓𝑤(𝑑𝑗,𝑘). 
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Fig. 4.9 compares the predictive power of bivariate models regressed on 𝑨 (basin area) and 

each one of the connectivity-based indices of urbanization 𝑼𝑰 (six cases shown in Table 4.2), 

obtained by applying Eq. (3.6) from the different expressions of 𝑯𝑪𝑰 listed in Table 4.2, against 

(i) a simple univariate model regressed on basin area 𝑨 only, and (ii) the state-of-the-art 

bivariate model in Missouri (Southard, 2010), fitted on 𝑨 and 𝑰𝑨 (i.e., the % of impervious areas), 

considered as the benchmark. All models predict the peak flows 𝑸𝑻 with return period 𝑻 of 2, 

5, 10, 25, 50, 100, or 500 years, for the Missouri case study (Southard, 2010).  

 

 

 

Figure 4.9. R2 obtained when fitting regression Eq. (3.8) to 𝐴 and 𝐼𝐴, and to 𝐴 and 𝑈𝐼, using the full 
dataset, for different combinations of the weighting coefficient 𝑊 and weighting function 𝑓𝑤(𝑑𝑗,𝑘). 

We notice that all models that consider 𝑼𝑰 instead of 𝑰𝑨 perform better than the state-of-the-

art model by Southard (2010), which uses 𝑨 and 𝑰𝑨 as explanatory variables, highlighting the 

superiority of connectivity-based descriptors to fit peak-flow regression equations over 

traditional, lumped ones. This is also the case when predicting the most extreme quantiles (i.e., 

𝑸𝟓𝟎, 𝑸𝟏𝟎𝟎, and 𝑸𝟓𝟎𝟎), for which the dependence on the level of urbanization seems to gradually 

vanish with increasing return period 𝑻, as indicated by the convergence of the performances 

of the benchmark models with (i) only 𝑨 or (ii) both 𝑨 and 𝑰𝑨 as explanatory variables.  

We observe a stronger sensitivity to the choice of weighting coefficient (i.e., 𝒏- or 𝑪𝑵-based), as 

compared to the weighting function 𝒇𝒘(𝒅𝒋,𝒌). E.g., 𝐶𝑁_𝐼𝑛𝑣 and 𝐶𝑁_𝐿𝑖𝑛 have similar performances, 

as well as 𝑛_𝐼𝑛𝑣 and n_𝐿𝑖𝑛, or 𝐶𝑁ℎ𝑦𝑏𝑟_𝐼𝑛𝑣 and 𝐶𝑁ℎ𝑦𝑏𝑟_𝐿𝑖𝑛. However, the two models that use 

the 𝑛-based 𝑈𝐼 (i.e., 𝑛_𝐼𝑛𝑣 and n_𝐿𝑖𝑛) perform better than their 𝐶𝑁-based counterparts 𝐶𝑁_𝐼𝑛𝑣 
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and 𝐶𝑁_𝐿𝑖𝑛. The hybrid models 𝐶𝑁ℎ𝑦𝑏𝑟_𝐼𝑛𝑣 

and 𝐶𝑁ℎ𝑦𝑏𝑟_𝐿𝑖𝑛 show similar performances to 

those of 𝑛_𝐼𝑛𝑣 and n_𝐿𝑖𝑛.   

We also tested the predictive power of 𝑼𝑰 

against 𝑰𝑨 in a k-fold validation framework. As 

the purpose of peak-flow prediction equations 

is the application to ungauged basins, that are 

not considered when fitting the model to the 

available data, the average performance on 

this test set should be a better indicator of the 

usefulness of our approach to regression 

equations. A high performance on the test set 

also ensures that the model could generalize a 

relationship between input and output 

variables, without overfitting the original dataset.  

 

Figure 4.10. R2 values obtained fitting Eq. (3.8) to 𝑨 and 𝑰𝑨, and to 𝑨 and 𝑼𝑰 on the test set in a 5-fold 
validation framework, for different configurations of the weighting coefficient 𝑾 and the weighting 
function 𝒇𝒘(𝒅𝒋,𝒌). 

 

… all the models that consider 

[the new urbanization index] 𝑼𝑰 

instead of [the traditional % of 

impervious areas] 𝑰𝑨 perform 

better than the state-of-the-art 

model … highlighting the 

superiority of connectivity-based 

descriptors to fit peak-flow 

regression equations, over 

traditional, lumped ones. 
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While Fig. 4.9 shows the R2 obtained by the models when fitted on the full dataset, Fig. 4.10 

reports the average performance on the test sets, highlighting a different picture as compared 

to the conclusions drawn from looking at Fig. 4.9 only. In Fig. 4.10, the benchmark model with 

𝑨 and 𝑰𝑨 shows a qualitatively similar performance as in Fig. 4.9, with a peak for intermediate 

quantiles. However, lower R2 values are achieved, as expected on a test set.  

Some of the competing models using 𝑼𝑰 as the proxy for urbanization outperform the 

benchmark, while others slightly underperform. Specifically, both models with a 𝑪𝑵-based 

weighting factor are on average less skilled than the benchmark. On the other hand, the 𝑛_𝐼𝑛𝑣 

and 𝑛_𝐿𝑖𝑛 models both beat the benchmark in predicting all 𝑸𝑻 values. The 𝐶𝑁ℎ𝑦𝑏𝑟_𝐼𝑛𝑣 and 

𝐶𝑁ℎ𝑦𝑏𝑟_𝐿𝑖𝑛 formulations also systematically outperform the benchmark (on average) on the 

test sets, with a score in between the models with 𝑪𝑵- and 𝒏-based weighting coefficients. In 

general, model performance shows more sensitivity to the formulation of the weighting 

coefficient 𝑾 rather than to the weighting function 𝒇𝒘(𝒅𝒋,𝒌). 

For the two most extreme quantiles, i.e., 𝑸𝟏𝟎𝟎 and 𝑸𝟓𝟎𝟎, the performance of all models 

decreases, even though the two models with 𝒏-based weighting factor and the hybrid ones still 

outperform the benchmark. For those extreme floods, basin size becomes the preponderant 

variable, while the effects of urbanization tend to become negligible, as indicated by the 

convergence of performances of the univariate (𝑨) and bivariate (𝑨-𝑰𝑨) models (Fig. 4.9). 

Besides this, it should be considered that there are inevitably huge uncertainties in estimating 

extreme quantiles from short flow records, which means that the models are fitted on highly 

uncertain data points. In conclusion, improvements in prediction accuracy should be pursued 

in the range of more frequent floods (below 100-year return period). 
 

4.4 Hierarchical contributions of different basin portions to discharge 

We explored the potential of LSTM networks for modeling the rainfall-runoff conversion 

process across a range of basin sizes and ways of structuring the precipitation input (Dell’Aira 

et al., 2022). For this research’s purposes, our main finding is that LSTM models do benefit from 

a spatially distributed representation of the rainfall input. Hence, this kind of model allows us 

to investigate what portions of the watershed are most relevant in determining its response to 

precipitation inputs: They will be those that lead to the best model performance when 

predicting outlet discharge based on their localized precipitation inputs by, e.g., minimizing for 

the number of inputs while maximizing for model performance. See, e.g., Dell’Aira et al. (2023) 

for implementation details of optimization as an investigation tool.  

Dell’Aira et al. (2022) show a preliminary application of LSTM rainfall-runoff model training 

using an incomplete basin representation. Even though only the precipitation at the lowermost 

quarter of the basin (closest to its outlet) was considered for calibration, the model could match 

the performance of other LSTM networks trained with the complete rainfall information. It is 

worth noting that the size of the basin is more than 5000 km2; thus, there is only low correlation 

among rainfall inputs from distant portions of the watershed. This indicates that the high 

performance of the model trained with incomplete localized rainfall series is not imputable to 

the fact that, e.g., the missing information from the other, neglected portions is highly 

correlated (and thus redundant) with the precipitation signals that were considered as model 

input;  
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it rather confirms that different parts of the watershed have unequal importance in affecting 

its hydrologic response. For the case study basin analyzed by Dell’Aira et al. (2022), the 

lowermost quarter has the strongest influence, given its spatial proximity to the outlet.  

To extend and generalize this application to distinguish between basin portions that are 

important, due to their location, from those that owe their strong influence mainly to their LC 

types, it may be useful to also analyze the average connectivity of those locations, using HCI 

raster maps derived for the studied basin (see Section 3.3 about the concept of HCI). However, 

this application has not been completed yet. Future steps should involve the development of a 

systematic procedure to study the influence of time-varying urbanization levels on the 

hydrologic response, from cross-analyses of basin connectivity and the portions of the basins 

whose precipitation signals have the strongest effects on outlet discharge. 
 

4.5 Uncertainties and biases in extreme precipitation 

We present the results from our analyses on high-resolution (1-min), high-density rainfall data 

from Germany, in an attempt at understanding what types and levels of uncertainty and biases 

we could be having in the Southeastern part of the U.S., and Tennessee specifically, with our 

COOP 15-min gauges, and with a weather station density that is about 17 times sparser. Again, 

the distribution of types of storms making up the list of extreme events will be different, as 

there are no tropical storms nor cyclones in Germany. Moreover, Central Europe does not see 

as many of the typical isolated, slow-moving, summer-season thunderstorms. Extreme 

thunderstorms, whether associated to frontal systems or not, are also more frequent in this 

part of the world. Future research on the effects of totalization could focus on the ASOS 1-min 

stations with longer records, but their density will always be too low to allow any meaningful 

study of the gauge density effects on extreme rainfall, justifying the use of the German data. 

We first discuss our findings about the potential effects of using totalized (15-min) data, and 

then present our results related to the potential uncertainties or biases due to low gauge density. 

Biases due to totalization 
For the German data, when estimating the 15-min extreme rainfall for a sampling ratio (SR) of 

1 (i.e., when using original gauge data totalized every 15 min, such as the COOP data), for an 

ARI of 2 years, we find a median SAF value slightly above 1.15. This is 4.5% more than the 1.10 

fixed value used in Atlas 14, so our results suggest that we are consistently underestimating 

the 15-min rain. But this relatively small bias is not the main issue at hand; it is the large 

individual, and thus unpredictable, at-a-gauge variability about the mean. For example, the 75th 

percentile for the 15-min SAF with 15-min data, across all possible combinations of stations 

(862) and ways of totalizing (15, so a total of 12,930 different SAFs for this duration) has a value 

of almost 1.18 (7.3% higher than the fixed correction applied in Atlas 14), while the 90th and 95th 

percentiles amount to 1.20 and 1.22, respectively. Moreover, as can be seen in Fig. 4.11, there 

are many cases in which the SAFs can be larger than 1.20, up to an absolute maximum of 1.30. 

This finding is sobering, because it indicates that at our existing 15-min gauges in the U.S., our 

current DDF estimates (for at-a-station frequency analyses) for 15-min rain, are already under-

estimated by 7, 10, or even 15% or more at a sizeable number of these gauges, in comparison 

to the DDF values we would have computed had we had rain gauges with 1-min resolution, 
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instead. It is also most probable that if we had such data, the spatial variability in rainfall 

maxima would be higher locally, which would in turn affect the regional frequency analyses. 

 
 

Figure 4.11. Individual SAFs for sampling ratio = 1, considering all stations, durations, and ways of 
totalizing. The boxplots show the statistics of individual SAFs, where the central red mark indicates 
the median, while the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers show the smallest and largest value in the sample, barring outliers, shown 
as black circles. The red triangles correspond to percentiles 90th, 95th, and 98th, in each case. 

As expected, there is less bias when estimating the 30-min DDF values with 15-min data (SR = 

2): in that case, the median SAF is 1.04, and the 75th percentile 1.05, while percentiles 90th and 

95th are about 1.06. In the mean, these results compare well with the 1.05 value in Atlas 14, but 

again SAFs vary widely:  many stations have SAFs above 1.07 or 1.08, with a maximum of 1.10. 

In turn, Fig. 4.12 depicts the experimentally obtained mean at-a-station SAFs (i.e., averaged 

across all ways of totalizing, for each station) as a function of the sampling ratio; it can be seen 

that, on average, the effects of using totalized rainfall data become negligible (< 1%) for a 

sampling ratio larger than 6. For the U.S. context, this would mean that when we use the 15-

min gauges to estimate the 90-min rainfall, the underestimation should be less than 1% on 

average. But of course, there will still be some stations with a larger negative bias for all 

durations under 90 minutes, due to the variability, as depicted by the red crosses (percentiles 

95th, 98th, and 99th) in Fig. 4.12. 
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An interesting preliminary result (not shown here) is that mapping the mean SAFs for different 

durations reveals a clear spatial structure across Germany. We applied geostatistical tests 

which found a significant spatial correlation for about half of the durations. 

 

Figure 4.12. Distributions of at-a-station averaged SAFs, across all 862 stations and all possible ways 
of totalizing, for different durations, as a function of the sampling ratio SR (which ranges from 1 to 10). 
Boxplots show the statistics of these at-a-station mean SAFs, where the central red mark indicates the 
median, while the bottom and top edges of the box indicate the 25th & 75th percentiles, respectively, 
the whiskers show the smallest and largest value in the sample, barring outliers, shown as black 
circles, and the red triangles correspond to percentiles 90th, 95th, and 98th, in each case. 

The conclusion from this detailed work is that mean SAFs are not independent with respect to 

the rainfall duration, within the range of shorter durations that we studied (up to 2 hours). The 

SAF values for 5 min are too low, as they are estimated from 1-min data which are not fine 

enough, but it is clear from the vast number of data incorporated in the distributions shown in 

Fig. 4.11 (e.g., for 30 minutes, there are 862 gauges times 30 different ways of totalizing for a 

total of 25,860 individual SAFs) that there are consistent trends in SAFs depending on duration. 

Again though, these effects are much less relevant, in engineering terms, than the problems 

due to the variability in the individual, at-a-station values of the SAFs. We suggest that the mean 

SAFs used in current DDF values (Atlas 14) are slightly biased, but most importantly, they do 

not reflect the actual variability across gauges as well as at gauges. 
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Effects of station density 
To assess the potential effects of station density on regional DDF estimates, we computed at 

each station the percentual differences between DDF values simulated for a range of lower 

gauge densities and the “true” DDF values obtained for the full density case.  

For each gauge’s region of influence (ROI), we generated 100 simulated DDF values for each 

studied density, obtained by randomly resampling the gauges within the ROI. For this analysis, 

any difference exceeding ± 5% was deemed to be significant.   

The plots in Fig. 4.13 show DDF values converging towards their “true” values, as gauge density 

increases. The panels on the left, for durations of 15 min and 2 h and ARI of 1 yr, depict many 

more cases of underestimation than those on the right, for ARI=25 yrs. Note that the ordinates 

represent the total number of simulations, i.e., they reflect the combined variability across 

stations and random realizations of lower density networks. We need to delve further into 

these results by analyzing what happens at individual rain gauges. Across both ARIs, the plots 

reveal a larger proportion of significant negative biases than significant positive ones. However, 

it is important to point out that the ratio of significant negative to significant positive biases 

decreases monotonically with increasing ARI. Interestingly, the plots across durations but for 

the same ARI are nearly identical, suggesting that duration only has negligible effects, at least 

for the shorter durations we are considering, relevant to urban hydrology. 

 

 
 

Figure 4.13. Bar plot for the number of significant positive differences (blue) and significant negative 
differences (orange) across all German stations, for durations of 15 min (above) and 2 h (below) and 
average recurrence intervals of 1 yr. (left) and 25 yrs. (right), as a function of station density in %. 

Maybe more important than the possible biases introduced by the low density of stations that 

we happen to have in the Southeastern U.S. and Tennessee (which is about 6%, so even smaller 

that the worst case in Fig. 4.13), is the fact that the number of significant deviations (positive or 
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negative) quickly increases with decreasing density, tending to grow exponentially for the more 

frequent ARIs, but only linearly for the higher ARIs analyzed in this work.  

In simpler words, DDFs estimated with regional frequency analyses from low-density networks 

are much more uncertain. We propose that this uncertainty is probably much larger than that 

reported in Atlas 14 by using the traditional methodology of resampling maxima at each gauge. 
 

4.5 Underestimation of frequent floods in the United States 

As outlined in Bulletin 17c (England et al., 2019), the current preferred approach for performing 

flood frequency analysis (FFA) in the U.S. is based on the use of annual maxima (AM) series, 

adopting the Log-Pearson III (LP3) distribution for modeling AM magnitudes. 

However, AM frequency analysis (FA) is conceptually unsuitable for accurately predicting the 

average interarrival time (AIT) of frequent floods (FFs), i.e., those that occur on average once 

every five years or less (Ball et al. 2019), as discussed in Section 2.6. In other words, if one is 

interested in determining the 𝑻-year event, AM-FA would likely underestimate the peak flow for 

𝑻 < 5 years (Langbein 1949; Dell’Aira et al., 2023). The methodology outlined in Section 3.6 can 

quantify the amount of underestimation of the 𝑻-year event. For example, Fig. 4.14 shows the 

underestimation in the 1.5-year flood at 432 watersheds distributed over the entire CONUS, 

determined by comparing the estimates obtained from AM- and POT-FFA (Eq. 3.9).  

 

Figure 4.14. Spatial pattern of observed FF underestimation 𝒖(𝑻) for the 1.5-year event. 

The spatial patterns in flood underestimation revealed by Fig. 4.14 clearly suggest that there is 

a strong geographical dependence, while the values indicate that it can be severe in some 

regions, reaching magnitudes as high as 60%. Please note here that using the definitions in 

Equations 3.9 and 3.10, an underestimation of 60% actually means that the magnitude of the 

“true” 1.5-year flood, as obtained from partial duration analysis, will be 2.5 times larger than 
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that estimated using annual maxima. Specifically, areas with arid and semi-arid climates 

present clusters of watersheds with the highest underestimation rates across the nation, so 

that a preliminary suggestion would be that hydrologists should be particularly careful about 

their choice of Flood Frequency Analysis methodology (i.e., use Peaks over Thresholds instead 

of Annual Maxima) in these regions. 

For the specific case of Tennessee, there are only two basins in the analysis, with moderate 

underestimation (in the order of 15 to 25%), but some watersheds in neighboring areas of 

surrounding states do show higher differences between AM- and POT-estimated frequent 

floods. 

Fig. 4.15 depicts the underestimation for a range of average interarrival time (AIT) values from 

1.5 to 5 years, considering both the observed (Eq. 3.9; shown on left panels) and the theoretical, 

duality-derived underestimation (Eq. 3.13; shown on right panels). The duality-derived 

underestimation �̂�(𝜉𝑔 , 𝜎𝑔 , 𝜇𝑔, 𝑇) computed from the duality-derived quantile ratio �̂�(𝜉𝑔, 𝜎𝑔 , 𝜇𝑔 , 𝑇) 

(Eq. 3.13) matches well the observed underestimation 𝑢(𝑇) (i.e., that obtained from Eq. (3.10) 

by computing the quantiles applying frequency analyses to both AM and POT series and then 

using the quantile ratio 𝑟(𝑇) from Eq. 3.9). It is clear that the spatial structures for the different 

AITs are fairly similar. This indicates that Eq. (3.14) provides an adequate tool for bias-correcting 

underestimated frequent flood magnitudes obtained using annual maxima. However, caution 

is advised when using Eq. (3.14) at locations with mixed flood populations, for the reasons 

discussed in Dell’Aira et al. (2023). Both the observed underestimation rate 𝑢(𝑇) and the duality-

derived underestimation �̂�(𝜉𝑔 , 𝜎𝑔 , 𝜇𝑔 , 𝑇) decrease for increasingly larger return periods, as 

expected, since results from AM- and POT-frequency analysis methods tend to converge for 

larger return periods (Langbein, 1949).  

As a concluding remark, it should be noted that the problem of underestimation due to using 

annual maxima in frequency analysis does not affect the estimation of large-return-period 

floods, typically applied in the design of major water structures and infrastructure. However, 

many environmental applications related, e.g., to river restoration (Wohl et al., 2015), do require 

accurate predictions of flood events that occur with relatively high frequency, due to their major 

impacts on stream geomorphology (Wolman & Miller, 1960) and ecology (Johnson et al., 1995; 

Meier, 2008; Wohl et al. 2015). 

 



  

 
56 

 

Figure 4.15. Spatial distribution of the observed underestimation 𝑢(𝑇), at left, and the duality-derived 
underestimation �̂�(𝜉𝑔, 𝜎𝑔, 𝜇𝑔, 𝑇), at right, for a range of 𝑇s.
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Chapter 5 
In this concluding chapter, we describe how our findings can benefit TDOT and, more generally, 

the practice of hydrologic engineering in the U.S. and beyond. We present these by subjectively 

ranking them in decreasing order of perceived importance and applicability. In each case we 

discuss potential applications of our findings, outline future steps for their implementation, and 

consider recommendations and promising future research lines. The last section provides a 

summary of our key recommendations.  
 

5.1 Applications and future implementation of the connectivity-based 

urbanization index 

As outlined in Section 4.2, the state of Tennessee has experienced significant growth in land 

development in those watersheds located within, or close to, major metropolitan areas, with 

strong local heterogeneities in the average annual increases in the percentage of impervious 

area. As discussed before, this is one of the reasons why current regional regression equations 

for peak-flow predictions in urban basins in Tennessee (and surrounding areas) necessitate 

major updates.  

Our connectivity-based urbanization index UI, described in Section 3.3 and benchmarked 

against an established regression model in Section 4.3, represents a better alternative than the 

percentage of impervious area (IA) as a descriptor for the level of urbanization at the basin 

scale, as it is able to capture information on the spatial distribution of urbanized areas within 

the basin and how this interacts with the hydrologic response. This feature of our proposed UI 

should help derive more robust regional models for peak-flow predictions, that can better 

adapt to changes in the level of urbanization over time.  

We are currently communicating with the USGS StreamStats team towards the future 

implementation of the connectivity-based UI in regional peak-flow equations. To ensure 

applicability at the scale of entire states, computationally less-expensive formulations of the 

connectivity index are required. Our observations on the low sensitivity of the performance of 

the connectivity-based urbanization index suggests that this can be achieved by adopting 

weighting functions that require minimal number of iterative steps for computing UI. Our 

preliminary results (not published in this report) indicate that this is a viable strategy.  

The applicability of this novel procedure is not limited to urban watersheds in Tennessee; we 

are currently piloting its expansion to other candidate case studies, considering urbanized 

regions in Virginia (Austin, 2014), some major urban centers in Arizona (Kennedy & Paretti, 

2014), and three large homogenous regions (based on physiographic considerations) across 

the states of Georgia and the Carolinas (Feaster et al., 2014). All the case-study regions contain 

watersheds with sizes spanning across three orders of magnitude, with the largest ones in the 

order of a few thousands of square kilometers. If our preliminary findings presented herein are 

substantiated, this research on urbanization indices would not only benefit TDOT, but all 

agencies charged with drainage design in urban areas, at all levels (federal, state, county, 

municipal). 
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In view of the future implementation of the connectivity-based UI in StreamStats, at the scale 

of whole states, in collaboration with the USGS, further parallelization of the program is advised 

from a computational standpoint. This is because the implementation in StreamStats will 

require the computation of connectivity raster maps for one or more states. We have identified 

Nvidia CUDA (Halfhill, 2008) as a good candidate programming platform to GPU-accelerate our 

program. Other authors (e.g., Qin & Zhan, 2012) have already successfully tested 

computationally demanding algorithms for raster operations in CUDA. An alternative (or 

synergic) approach for reducing the computational burden could be searching for specific 

formulations of the HCI that display lower computational demand, considering specific 

weighting functions that allow to neglect some of the otherwise required calculations. Our 

results suggest that finding weighting functions that require a convenient number of iterations, 

from a computational perspective, without losing too-much information and predictive power, 

should be a viable course of action. 

As a final, future projection about the potential applications of the urbanization index, we 

suggest that subsequent improvements of the UI should also account for the presence of 

stormwater infrastructure in urban watersheds, as this represents an additional source of 

hydrologic connectivity. We recommend that further research efforts be performed in 

collaboration with TDOT and the USGS, and maybe other agencies, to facilitate acquiring 

detailed data on local drainage infrastructure, thus paving the way for such expansion of the 

connectivity-based UI. Preliminary data that would be required involve the stormwater 

infrastructure for at least a few dozen urbanized basins. Such maps of stormwater 

infrastructure should preferably be in GIS format, for ensuring compatibility with the software 

that we have developed in the framework of the present project.  

In Tennessee, not only are gauged urban watersheds scarce, but they are highly clustered in 

space, and in many cases do not coincide with the location of rain gauges. It will be difficult to 

improve our predictive tools for engineering hydrology if we do not increase the density and 

representativity of the hydrometeorological network (the number of stream gauging stations 

and rain gauges) in the state. This must be done in a concerted way, so as to ensure adequate 

spatial coverage across different urban areas in Tennessee, a range of variability in the 

properties of the gauged watersheds, and a concurrent measurement of the rainfall input, as 

recommended in Section 5.2, below. 
 

5.2 Uncertainties, biases, and trends in extreme precipitation 

Our findings demonstrate that it is highly probable that using the currently available rainfall 

data in Tennessee (and the Southeastern U.S. as a whole), with a sparse (low-density) network 

consisting mostly of 15-minute Fisher and Porter rain gauges, introduces negative biases as 

well as a large variability in our estimates of extreme precipitation; in other words, IDF-DDF 

values are underestimated and uncertain. It is clear that these issues should warrant further 

research. 

We recommend that our methodological approaches, derived on German precipitation data, 

be applied to rain gauges in Tennessee and surrounding states. We see potential benefits in 

reproducing our study for those 1-min ASOS stations with longer records, to locally quantify 

the variability as well as the bias introduced by the use of 15-min rainfall data.  
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Given the nature of precipitation events in this part of the world, we hypothesize that the biases 

may be even larger than those observed in Germany. 

An immediate practical recommendation from our findings is that given their inherent 

variability both across gauges and at a gauge, we should not use mean or median rainfall 

sampling adjustment factors in order to uniformly correct DDF values derived from fixed 

maxima. Instead, we should think about moving to a more conservative approach, maybe using 

the 75th or the 90th percentile of the SAFs derived at those fewer gauges with higher (1-min) 

resolution. A potential future research line would be to attempt to understand the spatial 

structure of SAFs, so that gauge location can be accounted for when correcting DDF values 

obtained from fixed, totalized data. 

This research proposes a new urbanization index UI to better represent the effects of urban 

development on the hydrologic response of basins, thus helping tackle the non-stationarity 

issue in urban hydrology due to changing land-cover conditions. However, as explained before, 

this is not the sole source of non-stationarity in urban floods: trends in precipitation can also 

change the frequency and magnitude of large floods. Regarding the trends in extreme 

precipitation in the Southeast U.S., our preliminary findings of an increase in their frequency 

corroborate previous studies. In the case of Tennessee, we find that for durations below 9 

hours, 30 to 45% of the rain gauges (depending on duration) show increasing or significantly 

increasing numbers of extreme events. These trends are slightly more evident in central and 

eastern Tennessee. 

We did not study the trends in the magnitude of the events, because of lingering questions 

about the quality of the data from the 15-minute gauges, which make up all of the stations with 

longer records, that are needed to test for temporal trends. Future funded research could 

possibly attempt to “clean” and merge the COOP data from different sources, jointly working 

with NOAA, in order to analyze rainfall trends with different techniques, either more statistical 

(trend tests) or else more “event-based,” using the information contained in the individual 

storms at each gauge location, as was initially proposed but finally not pursued within this 

project. 

It will be difficult to locally document the effects of station density on DDF-IDF value estimation, 

given the low density of weather stations across Tennessee (and the U.S.). Still, we recommend 

further research into this topic, aiming at incorporating gauge density into our confidence 

estimates for DDF-IDF values. It should be clear that a higher density of stations results in many 

more closely located gauges, all sampling the same “extreme rainfall climate,” which in turn 

should decrease the uncertainty around estimated extreme rainfall quantiles. 

A tentative recommendation based on all of the above ideas, is that the DDF/IDF values in Atlas 

14 need to be updated. Moreover, we recommend that state agencies increase the current low 

density of rain gauges as well as the temporal resolution of the current COOP gauges, 

considering 1-minute resolution equipment, so that in the future these topics can be pursued 

with more adequate data in terms of density and temporal resolution. If more stream gauging 

stations are installed in urban watersheds across the state, it will be important to concurrently 

measure precipitation in those basins so as to maximize benefits to designers and planners. 
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5.3 Revisiting current techniques for frequent flood estimation 

Because performing frequency analyses with annual maxima underestimates peak floods for 

return periods below 5 years, we recommend that Bulletin 17c incorporates adjustments for 

frequent-flood prediction. Our proposed method is a valid candidate both for assessing the 

amount of potential underestimation at a given location, and correct biased frequent flood 

predictions. This is of concern in a range of river-related disciplines; for example, a stream 

restored considering a bankfull discharge that was underestimated because of this issue could 

end up flooding as much as three times more often than per-design conditions (Dell’Aira et al., 

2023). 
 

5.4 New approach to study urbanization effects on floods 

Using an LSTM artificial neural network model to derive data-driven rainfall-runoff models, 

Dell’Aira et al. (2022) showed that given that specific parts within a given basin affect its 

hydrologic response more than others, accurate flow predictions can be still obtained 

considering the precipitation input only at those locations, neglecting rainfall over the 

remaining, less relevant portions of the basin. 

We suggest that a future methodology to investigate the effects of urbanization changes can 

be developed based on this type of models, by searching for spatial correlations between areas 

with high rates of urbanization-induced connectivity and those portions of a watershed whose 

rainfall inputs have the highest predictive power. The experimental procedure should involve 

a range of watersheds with different sizes, to ensure generalization of the findings across a 

variety of hydrologic and geomorphic conditions.  

The main advantage of the proposed procedure is that it implicitly excludes the effects of 

trends in precipitation, ultimately disentangling land-cover changes and precipitation trends, 

i.e., the two main sources of non-stationarity in a basin’s hydrologic response (see Section 2.1).  
 

5.4 Summary of key recommendations 

• Further pursue the development of the urbanization index UI, also including the effects of 

stormwater drainage infrastructure on hydrologic connectivity. The current UI described in 

this report only considers surface hydrologic connectivity, driven by relief and the nature of 

surface patches (their slope, roughness, infiltrability, etc.), but most urbanized and 

urbanizing areas contain stormwater sewerage systems, with their own, separate effects on 

hydrologic connectivity. Including information on both types of connectivity should enhance 

the explanatory power of UI in peak flow equations for urbanizing areas, further reducing 

estimation uncertainty. 

• Simultaneously increase the number of gauged basins as well as the density of rain gauges 

across urban areas of Tennessee. The design for such enhanced hydrometeorological 

monitoring networks (sometimes known as “mesonets”) should consider both a more 

distributed coverage across the different urban areas of the state, as well as a wider range 

of watershed characteristics. Rain gauging equipment for the monitored watersheds should 

be state-of-the-art, with 1-minute resolution, and a spatial density that ensures coverage of 
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extreme, small-scale convective events (i.e., thunderstorms). This would allow for future 

development of locally tailored peak flow equations, better estimation of IDF-DDF values, 

and improvements in methods for engineering design, that would increase urban resilience 

to extreme hydrometeorological events across Tennessee. 

• Perform further, more detailed studies of: (i) how totalized, 15-min data underestimate 

actual maxima, (ii) what uncertainty or bias is introduced due to the current, low density of 

weather stations, (iii) trends in both frequency and magnitude of extreme precipitation, and 

(iv) how the development of novel, event-based rainfall analysis techniques can help extract 

more information from the sparse, short precipitation records available in Tennessee. 

Collectively, results from these studies would allow for updating IDF-DDF values in 

Tennessee, so that the present, higher values of rainfall are reflected in engineering designs. 

In this respect, it should be noted that there is increasing evidence, including results from 

this research, that the currently accepted extreme rainfall values for design, from NOAA’s 

Atlas 14, are underestimated. 

• Convey to practitioners that commonly performed flood frequency analyses based on 

annual maxima can severely underestimate frequent floods (say, those with return period ≤ 

5 years), and thus should not be used in engineering applications requiring such estimates, 

like the determination of bankfull floods, or for river restoration projects. This would ensure 

that designs are not based on biased estimations, which increases their risk of failure. 

• Pursue the study of machine learning models for explaining the hydrologic effects of 

urbanization, disentangling trends in land cover from those in precipitation. We think that 

this is the next frontier for meaningful improvement in hydrologic estimates needed for 

design.  
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Table A1. Urbanization trends (%IA) in developed HUC-12 basins in Tennessee from 2001 to 2021. 

HUC-12 basin 2001 2004 2006 2008 2011 2013 2016 2019 2021 

051301070204 8.93 8.93 9.06 9.06 9.14 9.14 9.33 11.45 11.46 

051301080702 10.61 10.61 10.84 10.84 11.06 11.06 11.11 12.14 12.17 

051302010306 8.51 8.51 9.96 9.96 10.66 10.66 11.19 14.99 15.24 

051302010501 5.78 5.78 6.79 6.79 7.29 7.29 7.54 10.35 10.84 

051302010602 3.95 3.95 4.89 4.89 5.91 5.91 6.79 9.35 10.65 

051302010603 5.84 5.84 6.92 6.92 7.52 7.52 7.96 10.93 11.19 

051302010605 6.97 6.97 7.85 7.85 8.05 8.05 8.26 11.69 11.88 

051302020101 4.47 4.47 6.98 6.98 7.73 7.73 8.91 12.93 13.89 

051302020102 25.45 25.45 26.66 26.66 27.26 27.26 27.46 33.88 33.98 

051302020302 15.59 15.59 16.39 16.39 16.80 16.80 16.92 21.18 21.35 

051302020304 17.60 17.60 18.14 18.14 18.47 18.47 18.81 23.28 23.57 

051302020305 35.10 35.10 35.88 35.88 36.39 36.39 36.72 44.07 44.37 

051302030106 5.84 5.84 7.78 7.78 8.36 8.36 8.73 12.31 12.35 

051302030203 10.79 10.79 11.64 11.64 12.46 12.46 12.83 15.98 16.28 

051302030204 3.97 3.97 6.01 6.01 7.08 7.08 8.09 11.84 11.98 

051302030206 15.31 15.31 18.11 18.11 19.47 19.47 20.78 26.65 26.94 

051302030301 7.34 7.34 8.87 8.87 9.37 9.37 9.85 13.45 13.83 

051302030304 19.40 19.40 21.76 21.76 23.11 23.11 23.57 30.72 32.51 

051302030305 6.30 6.30 7.49 7.49 7.84 7.84 8.11 10.93 11.24 

051302030307 6.67 6.67 7.39 7.39 7.84 7.84 8.23 10.90 11.39 

051302030308 11.67 11.67 12.93 12.93 14.42 14.42 15.35 20.97 21.58 

051302030309 15.16 15.16 15.82 15.82 16.78 16.78 17.82 23.85 24.89 

051302040105 14.64 14.64 16.39 16.39 17.43 17.43 18.23 22.96 23.18 

051302040601 7.82 7.82 8.77 8.77 9.16 9.16 9.63 12.46 12.63 

051302060401 7.52 7.52 8.16 8.16 8.99 8.99 9.06 10.36 10.36 

051302060404 12.73 12.73 14.16 14.16 15.85 15.85 16.79 19.67 19.84 

051302060406 11.34 11.34 12.45 12.45 13.43 13.43 14.08 17.82 18.29 

051302060503 7.48 7.48 8.01 8.01 8.35 8.35 8.43 10.00 10.31 

051302060603 2.74 2.74 5.43 5.43 6.92 6.92 8.53 10.93 11.51 

051302060604 6.87 6.87 10.01 10.01 11.52 11.52 12.87 15.97 16.87 

051302060707 5.24 5.24 6.67 6.67 7.90 7.90 8.76 11.38 11.79 

051302060708 10.00 10.00 11.47 11.47 12.25 12.25 12.59 15.72 16.03 

060101020404 5.46 5.46 5.46 5.46 5.46 5.46 7.96 12.40 12.40 

060101020501 43.90 43.90 44.38 44.38 44.50 44.50 44.76 48.62 48.62 

060101020502 8.32 8.32 9.11 9.11 9.56 9.56 9.85 11.76 11.78 

060101020703 11.13 11.13 11.51 11.51 11.76 11.76 11.88 14.64 14.65 
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Table A1 (cont.) Urbanization trends in developed HUC-12 basins in Tennessee from 2001 to 2021. 

060101020704 12.29 12.29 12.70 12.70 12.92 12.92 13.20 15.96 16.00 

060101030503 8.52 8.52 8.92 8.92 9.03 9.03 9.13 10.99 10.99 

060101030504 22.60 22.60 23.22 23.22 23.67 23.67 23.79 27.62 27.63 

060101030506 16.90 16.90 18.32 18.32 19.38 19.38 19.63 22.58 22.66 

060101040207 13.37 13.37 14.11 14.11 14.36 14.36 14.71 18.33 18.37 

060101040308 12.51 12.51 13.79 13.79 14.18 14.18 14.33 16.79 16.90 

060101070207 11.64 11.64 14.08 14.08 15.07 15.07 15.43 18.64 18.94 

060101070307 5.09 5.09 8.21 8.21 9.09 9.09 9.37 12.84 13.10 

060102010108 15.74 15.74 18.45 18.45 19.83 19.83 20.34 26.88 27.10 

060102010110 8.26 8.26 9.30 9.30 9.71 9.71 10.01 13.25 13.42 

060102010201 23.49 23.49 24.73 24.73 24.96 24.96 25.17 28.59 28.61 

060102010202 34.47 34.47 35.30 35.30 35.64 35.64 35.84 39.74 39.77 

060102010203 45.84 45.84 46.33 46.33 46.54 46.54 46.63 50.95 50.97 

060102010204 16.73 16.73 17.46 17.46 17.91 17.91 18.12 21.48 21.58 

060102010205 5.70 5.70 6.71 6.71 7.07 7.07 7.21 11.22 11.24 

060102010206 8.86 8.86 9.70 9.70 10.04 10.04 10.30 12.57 12.61 

060102010207 30.65 30.65 31.61 31.61 32.03 32.03 32.32 36.70 36.76 

060102010208 22.79 22.79 25.33 25.33 26.37 26.37 26.85 32.10 32.32 

060102010210 8.25 8.25 9.25 9.25 9.62 9.62 9.87 12.42 12.58 

060102010302 8.43 8.43 9.18 9.18 9.54 9.54 9.93 12.06 12.13 

060102070201 11.17 11.17 12.90 12.90 13.33 13.33 13.52 16.53 16.64 

060102070202 14.93 14.93 17.28 17.28 17.80 17.80 18.33 22.00 22.29 

060102070302 12.33 12.33 12.75 12.75 12.90 12.90 13.16 14.97 14.97 

060102070403 10.70 10.70 11.20 11.20 11.41 11.41 11.51 13.40 13.42 

060102080301 14.43 14.43 14.84 14.84 15.15 15.15 15.57 17.53 17.65 

060200010502 8.16 8.16 8.83 8.83 9.17 9.17 9.40 11.86 11.93 

060200010902 6.27 6.27 7.53 7.53 8.45 8.45 8.98 12.91 13.13 

060200010903 27.59 27.59 27.90 27.90 28.13 28.13 28.26 32.54 32.61 

060200010904 22.29 22.29 23.20 23.20 24.07 24.07 24.67 32.01 33.22 

060200010905 19.22 19.22 21.41 21.41 24.22 24.22 24.78 29.94 30.20 

060200011003 31.47 31.47 31.98 31.98 32.30 32.30 32.46 36.86 36.88 

060200011105 7.35 7.35 8.34 8.34 8.52 8.52 8.66 10.37 10.38 

060200011202 17.03 17.03 17.62 17.62 18.05 18.05 18.19 21.23 21.28 

060200021404 15.41 15.41 16.19 16.19 17.07 17.07 18.25 21.05 21.14 

060300020801 6.79 6.79 7.88 7.88 8.29 8.29 8.30 10.56 10.64 

060400030201 3.26 3.26 5.44 5.44 6.33 6.33 7.22 10.00 10.93 

060400030506 7.27 7.27 7.76 7.76 8.00 8.00 8.07 10.22 10.47 

080101000703 17.60 17.60 18.56 18.56 19.27 19.27 19.45 22.02 22.03 

080102050302 8.80 8.80 9.28 9.28 9.55 9.55 9.65 11.47 11.49 

080102090406 9.83 9.83 10.19 10.19 10.40 10.40 10.61 11.74 11.95 
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Table A1 (cont.) Urbanization trends in developed HUC-12 basins in Tennessee from 2001 to 2021. 

HUC-12 basin 2001 2004 2006 2008 2011 2013 2016 2019 2021 

080102100305 16.78 16.78 18.12 18.12 19.17 19.17 19.85 23.91 24.02 

080102100306 19.08 19.08 19.83 19.83 20.47 20.47 21.05 25.37 25.40 

080102100307 32.66 32.66 35.38 35.38 36.75 36.75 37.10 41.39 41.48 

080102100308 30.40 30.40 30.92 30.92 31.19 31.19 31.41 35.26 35.29 

080102110101 7.60 7.60 10.22 10.22 11.52 11.52 12.92 15.97 16.41 

080102110102 30.95 30.95 33.46 33.46 34.69 34.69 35.33 40.27 40.42 

080102110103 37.88 37.88 38.85 38.85 40.00 40.00 40.31 44.79 45.25 

080102110201 19.97 19.97 20.30 20.30 21.56 21.56 21.76 24.82 24.84 

080102110301 10.03 10.03 10.69 10.69 10.86 10.86 10.96 13.01 13.72 

 

 

 


