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Executive Summary 
The purpose of this project is to expedite the use of emerging technologies such as drones at the 
Tennessee Department of Transportation (TDOT) for disaster preparedness, response, 
mitigation, and recovery. Tennessee faces many threats from natural disasters such as tornadoes, 
flooding, landslides, and earthquakes, which damage civil infrastructure and cause major service 
interruptions. TDOT plays critical roles in preparing for, mitigating, responding to, and recovering 
from disasters. The use of advanced and emerging technologies such as drones, sensing 
technologies, machine learning methods, and optimization techniques could significantly 
expedite disaster relief efforts. However, before deploying these technologies to assist disaster 
relief efforts, TDOT needs to address two important questions. First, what technologies are 
available for TDOT to assist disaster relief efforts? Different types of disasters, different site 
conditions, and different tasks of emergency management require the use of different 
technologies. TDOT needs an in-depth understanding of the available technologies and their 
applications in different disaster scenarios. Second, how these technologies can be best used by 
TDOT? To use the technologies in an effective and efficient manner, information must be 
collected to develop tools, use cases, and workflows for potential implementation in the state of 
Tennessee. Therefore, addressing the two questions is urgent and critical for TDOT to use the 
advanced and emerging technologies in disaster reliefs. 

To address the critical needs, this research reviewed the current practice and system 
configurations for using drones and other emerging technologies in disaster relief efforts, 
providing useful insights for TDOT to understand the uses of these technologies. In addition, a 
generalizable framework based on 3D reconstruction, deep learning, and optimization was 
proposed for processing drone-acquired data and drone mission planning, which can be applied 
in various disaster scenarios. The framework can be adapted based on the needs from TDOT for 
potential implementation. This research also investigated the use cases as well as general 
workflows for using drone systems and software tools in different types of disaster scenarios, 
including post-disaster infrastructure systems surveys, landslide investigation, and flooding 
assessment. Pilot tests were also conducted to validate the proposed methods, use cases, and 
workflows, confirming the feasibility and potential of using drones and associated technologies 
in disaster relief efforts, and therefore providing TDOT useful information for potential 
implementation. 

Key Findings 
The key findings of this research were summarized below. 

 This research led to a critical review of the hardware systems of drones and sensing 
technologies for application in different disaster relief efforts, sharpening TDOT’s 
understanding about the capability and applicability of the emerging technologies. 

 This research led to a generalizable method for using drones and artificial intelligence-
enabled software/data processing tools, providing TDOT an implementable framework to 
collect, process, and analyze critical data before, during, and after disasters for disaster 
preparedness, response, and recovery. The framework was tested and validated using the 
data collected during the Tennessee tornado disasters, offering TDOT implementation 
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insights for using the framework. 3D reconstruction can achieve due accuracy with drone-
collected images, and the 3D model can be used in various analysis for disaster relief efforts. 
Deep learning methods were also found effective in processing drone-collected images to 
extract disaster-relevant information, but good performance requires substantial training 
data which may be difficult to acquire. 

 This research produced use cases and workflow for using drones in different types of disaster 
scenarios for potential implementation in Tennessee. The implementation of these advanced 
technologies will help address several concerns that TDOT is facing with, including post-
disaster infrastructure surveys, landslides and floods, therefore, could help TDOT to improve 
the efficiency and effectiveness of disaster relief efforts. 

 The potential and feasibility for using drones in disaster relief efforts such as post-disaster 
infrastructure survey and structure assessment and landslide investigation were 
demonstrated via field experiments, confirming the promise of drones to assist disaster relief 
efforts. 

Key Recommendations 
• With appropriate system configurations, drones can be used in various scenarios for disaster 

relief efforts to expedite the task implementation, improve data collection, and reduce survey 
and assessment time, as well as improve safety during disaster relief efforts. It should also 
be noted that different types of drones should be operated for different types of disaster 
scenarios, considering the constraints and limits of the drone systems, the requirement of 
disaster relief tasks, and the nature and environmental conditions of the disasters. 

• Commercial software and tools are available to control drones and process drone-collected 
data for common applications such as 3D reconstruction. 3D reconstruction of disaster scene 
or structures of interest could provide useful models for subsequent analysis such as damage 
assessment and slope failure analysis. In addition, deep learning techniques can be applied 
to process drone-collected images for extracting disaster-relevant information with due 
accuracy. To achieve better performance, large amounts of training data are needed for more 
robust performance in disaster relief efforts. 

• The uses of drones in disaster relief efforts such as post-disaster infrastructure survey and 
assessment, landslide investigation, and flooding assessment are recommended. The 
workflows differ in different types of disasters and for different stages such as disaster 
preparedness, mitigation, response, and recovery. 

• Practitioners need to carefully evaluate the workflow and use cases for practical applications, 
particularly in the challenging environments after disasters that involves many uncertainties.   
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Chapter 1  Introduction  
1.1 Research Problem 
Tennessee faces many threats from natural disasters such as storms, flooding, landslides, and 
earthquakes, which damage civil infrastructure and cause major service interruptions. Facing the 
increase in number and severity of natural disasters, there is a critical need for the TDOT to 
enhance their technical capability in preparing for, responding to, mitigating the consequences 
of, and recovering from disasters. Recently, the use of advanced technologies such as drones and 
sensing technologies in disaster preparedness, response, and recovery have gained substantial 
attention. However, before deploying these technologies to assist disaster relief efforts, TDOT 
needs to address two important questions. First, what technologies are available for TDOT to 
assist disaster relief efforts? Different types of disasters, different site conditions, and different 
tasks of emergency management require the use of different technologies. TDOT needs an in-
depth understanding of the available technologies and their applications in different disaster 
scenarios. Second, how these technologies can be best used by TDOT? To use the technologies 
in an effective and efficient manner, information must be collected to develop tools, use cases, 
and workflows for potential implementation in the state of Tennessee. Therefore, addressing the 
two questions is urgent and critical for TDOT to use the advanced and emerging technologies in 
disaster reliefs. 

1.2 Research Objectives 
The overarching goal of this research is to expedite the use of emerging technologies such as 
drones at TDOT for disaster preparedness, response, mitigation, and recovery. Three research 
objectives were pursued in this project. 

 Objective 1: Identify and study hardware systems that can be used for disaster relief. 
The research team identified a few hardware systems that can be used in disaster relief and 
reviewed the appropriate configurations of the hardware systems for disaster relief 
applications. 

 Objective 2: Identify and study software systems that can be used for disaster relief. 
The research team identified and reviewed software systems that can be used in disaster 
relief, and developed a generalizable framework based on 3D reconstruction, deep learning, 
and optimization for using drones in disaster relief. 

 Objective 3: Develop use cases and workflows for potential implementation. The 
research team assessed the applicability and efficacy of using drones in different disaster 
scenarios, and documented use cases and general workflows of using the technologies for 
potential TDOT implementation. 

1.3 Work Scope and Methods 
The scope of work and methodological approaches to address TDOT’s critical needs are 
elaborated as follows. 

 TDOT’s need to identify and study hardware systems for disaster relief. An in-depth 
understanding of the hardware systems and constraints for usage in disaster areas could 
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help TDOT safely, effectively, and efficiently operate the systems and avoid failures and 
accidents. The research team assessed the suitability of operating different hardware 
systems, identified the appropriate system configurations, and documented the data 
collection requirements in different types of disasters. 

 TDOT’s need to identify and study software systems for disaster relief. Under time 
pressure and workforce shortage during emergency response, TDOT needs appropriate 
software systems in place to automate the processing of large amounts of data collected by 
the hardware systems. The research team reviewed different software/data analysis tools 
and developed a generalized framework for using drones and artificial intelligence (AI) based 
methods for processing data to assist disaster relief efforts. 

 TDOT’s need to develop use cases and workflow for potential implementation. TDOT 
plays important roles in preparing for, responding to, mitigating the consequences of, and 
recovering from disasters. The research team assessed the applicability of drone 
technologies in disaster relief efforts in Tennessee and developed use cases and workflows 
of applying the emerging technologies in different types of disaster relief scenarios. 

1.4 Outcomes and Research Significance 
This research led to the following outcomes and may yield significant benefits to TDOT. 

 This research led to a critical review of the hardware systems of drones and sensing 
technologies for application in different disaster relief efforts, sharpening TDOT’s 
understanding about the capability and applicability of the emerging technologies. 

 This research led to a generalizable method for using drones and AI-enabled software/data 
processing tools, providing TDOT an implementable framework to collect, process, and 
analyze critical data before, during, and after disasters for disaster preparedness, response, 
and recovery. The framework was tested and validated using the data collected during the 
Tennessee Tornado disasters, offering TDOT implementation insights for using the 
framework. 

 This research produced use cases and workflow for using drones in different types of 
disasters scenarios for potential implementation in Tennessee. The implementation of these 
advanced technologies will help address several concerns that TDOT is facing with, including 
post-disaster infrastructure surveys, landslides and floods, therefore, could help TDOT to 
improve the efficiency and effectiveness of disaster relief efforts. 
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Chapter 2 Literature Review  
In Chapter 2, the application of drones and other emerging technologies in different disaster 
scenarios are reviewed, including post-disaster infrastructure and structure survey and 
assessment, landslide investigation, and flooding assessment. The hardware configuration and 
software uses were investigated to provide insights for potential TDOT implementation. 

2.1 Post-Disaster Infrastructure Survey and Assessment 
Structures including buildings, bridges, roads, and other civil infrastructure systems can be 
damaged after disasters. It is very critical for TDOT to identify the defects and assess the damages 
of civil infrastructure systems and buildings after disasters to better plan for disaster relief 
efforts. One of the key applications is the assessment of bridges and other structures. The drone-
assisted assessment of structures has been studied and implemented as related to routine 
structural inspections and as a part of a post-disaster response [1,2]. The application of drones 
to structural assessment introduces some new challenges. Unlike other drone applications that 
primarily require top-down sensing or imaging, typically from a significant height, the assessment 
of structures could require sensing or imaging of objects below the drone, to the side (due to the 
vertical nature of structures), and above (for example the underside of a bridge). Furthermore, 
due to the nature of structural assessment, sensing or imaging may be required closer to the 
target (the structure in this case) than for other types of assessment [3]. Typically, structural 
assessments examine structural members and connections for signs of damage or deterioration. 
Items of note include cracking, tearing, bulging, bearing movement, spalling, section loss, rust, 
water stains, paint conditions, bolt conditions, and other defects or abnormalities [4]. Visual 
imaging from still images or videos are the main tool for structural assessment using drones and 
can be used to observe most of the above signs of damage or deterioration. For some of these 
items, including cracks, it is important that this imaging is high-quality and high-resolution [5]. 
Furthermore, relatively close flight of the drone to the structure is needed to capture sufficient 
imaging [3]. In addition to visual imaging, there is interest and has been research in equipping 
drones with other types of sensor systems including light detection and ranging (LiDAR) or laser 
imaging, hyperspectral imaging, thermal imaging, radiation detectors, humidity sensors, and 
temperature sensors [6,7]. 

Drones incorporate different levels of technology and automation for application in 
infrastructure survey and assessment. While some drones are remotely piloted by humans in 
real-time, some drones operate more autonomously with pre-planned missions and are 
supervised by an operator. Flight planning software is required to enable this autonomous 
operation. Commercial flight planning software for drones include Mission Planner, DJI Ground 
Station Pro, Pix4d Capture and Drone deploy [6]. Typical commercial flight planning software 
utilizes a graphical interface in which a mission is laid out. These mission components include 
waypoints, tasks for the drone at the waypoints, and tasks for the drone in between waypoints. 
The drone can also be commanded with this software to switch in and out of manual mode as 
desired. One mission type that is of particular importance to the application of drones for 
structural assessment is one supporting 3D model reconstruction; however, many flight planning 
software do not have an effective option available for automated capturing of the necessary 
imagery at low altitude for structural 3D reconstruction [8]. In addition to selecting waypoints for 
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drones, flight planning software can be used to determine how the drone travels between the 
configured waypoints. Options include not specifying the trajectory, specifying the trajectory, and 
enabling obstacle avoidance along a trajectory [6]. If a trajectory is not specified, the trajectory 
can be optimized by the software for speed or drone endurance. 

3D models reconstructed from data collected from drones are used to identify many signs of 
structural damage or deterioration. The construction of these 3D models can be done with many 
different techniques. One of the most important 3D model reconstruction methods uses the 
photogrammetry technique structure-from-motion (SFM) [6]. This technique can be used to 
create 3D models of entire structures or models of particular areas of interest, such as a 
connection. The SFM technique works using a large number of images of the target from 
perspectives all around the target. Furthermore, commercial software is available, such as Agisoft 
Metashape, that automates this process and requires only the image files to run. Compared to a 
3D model produced with LIDAR, it was found in this case that the SFM 3D model of the bridge 
had a higher noise level than the LIDAR derived model, but the SFM model was denser and more 
complete [9]. 3D models of structures can be used in multiple techniques to detect damage from 
disasters and other sources. This includes techniques that exploit machine learning, including 
convolutional neural network (CNN)-based structural damage detection and classification. Cracks 
can be identified in structural members using images and videos from drone in real-time or after 
a flight by a human inspector and without the need for additional processing and software [10]. 

Underwater infrastructure systems, for example dams, levees, bridge piers, and harbor piers, 
must be inspected regularly as part of disaster prevention, preparation, and recovery [11–14]. 
Considering the significant number of underwater bridge piers in Tennessee and previous bridge 
failures caused by bridge pier scours in Tennessee such as the 1989 Hatchie River US-51 bridge 
failure [15–17], bridge pier inspections are critical. Underwater drones can provide a safer and 
more accurate inspection for underwater infrastructure systems when compared to divers’ 
inspection [12,14,18]. Bridge pier inspection to detect potential scours normally requires divers 
to spend a long time under the water to inspect the bridge piers, which involves a tremendous 
amount of risk and danger [19–22]. DeVault [19] designed an underwater drone with an 
embedded video camera to capture videos of bridge piers for scour inspection. Ueda et al. [14] 
introduced a bridge pier inspection device using an underwater drone and concluded that the 
developed system is capable of imaging cracks found on underwater structures. Pauly & Skrocki 
[21] examined the possibility of employing underwater drones for bridge pier inspection for the 
Michigan Department of Transportation. They compared the underwater drone inspection 
results with previously performed divers’ inspection and found that scour inspection conducted 
using the underwater drone can be as accurate as divers’ inspection. Using sonar sensors 
installed on the underwater drone could also increase the accuracy of the scour mapping results. 
Park et al. [23] developed a 2 MHz sonar sensor that can obtain higher-resolution sonar scans 
when compared with the existing 1 MHz sonar sensors in bridge inspections. To create a map of 
the scanned bridge pier or other underwater infrastructure the sonar scans should be processed. 
The majority of the commercial sonar systems come with proprietary software that can collect 
the reflected sonar signals and create a 3D cloud point of the surveyed area [21]. The collected 
3D cloud point can then be imported to computer-aided drawing (CAD) software for viewing, 
editing, or further analyses. Some underwater drone systems use a combination of visual 
cameras in addition to a sonar sensor to create a better understanding of the mapping region. 
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In this case, a software system capable of using both the images acquired by the cameras and 
the sonar signals in creating the map of the scanned underwater infrastructure should be used. 

Subsurface infrastructure systems such as sewers, water, oil, gas, and steam pipelines are 
society’s lifelines and can be disrupted by various disasters including earthquakes and floods 
[24,25]. Failures of these infrastructure systems could also cause disasters due to potential 
explosions or contaminations [26–29]. Excavating the ground to inspect subsurface 
infrastructure systems as part of disaster prevention, preparation, and recovery is extremely 
tedious, costly, and most often not capable of identifying all the subsurface infrastructure failures 
[30,31]. Recent advancements in drones and sensors can be leveraged to conduct non-
destructive inspections on subsurface infrastructures [32,33]. For instance, drones equipped with 
thermal cameras or ground penetrating radars (GPR) can be used to assist the mapping and 
inspection of subsurface infrastructure systems to reduce associated costs [33,34]. Colorado et 
al. [35] designed a drone equipped with GPR for detecting buried objects made of at least 30% 
metal. This drone system was capable of detecting objects larger than 0.08 m in diameter buried 
about 0.2 m in the ground. Zhang et al. [36] investigated the effects of GPR antenna height and 
angle on the detection of nonmetallic buried objects. The results showed that scanning the soil 
at 0.7 m above the ground and an antenna angle of 60° significantly increases the signal strength 
and therefore the quality of the mapping for identifying nonmetallic buried objects. Garcia-
Fernandez et al. [32,37] examined mounting a GPR on a DJI M600 Pro RTK [38] drone to detect 
buried objects. The developed drone was fully capable of detecting both metallic and nonmetallic 
objects buried at a depth of about 0.2 m. Sugimoto et al. [39] proposed using acoustic irradiation-
induced vibration to detect buried objects. The proposed setup is composed of a commercial 
sound source that can be mounted on drones and a laser Doppler vibrometer (LDV) (such as PSV-
500 Scanning Vibrometer [40]). This setup was more successful in identifying buried objects in 
wet soil compared to GPR-based buried object detection that performs better in dry soils. 
Thermal infrared (TIR) cameras are useful tools for inspecting subsurface infrastructure carrying 
fluids with a heat gradient compared to the soil medium [33]. Shakmak & Al-Habaibeh [41]  
examined the possibility of detecting water leakage in buried pipelines using high-resolution and 
low-resolution TIR cameras. Kavi & Halabe [31] investigated the feasibility of detecting buried 
pipelines carrying hot fluids using a TIR camera. 

2.1 Drone-Assisted Landslide Investigation 
Landslides are devastating disasters that slowly develop in multiple stages and can have various 
causes [42]. Every year hundreds of landslides occur in Tennessee, some of which were initiated 
many years ago by small earthquakes (especially in western Tennessee) and develop slowly while 
some are caused by excessive rainfalls [43–45]. Drones with advanced integrated sensors can be 
used to identify and monitor areas prone to landslides as part of disaster preparation and 
prevention measures, and map landslides post-failure for the purpose of disaster recovery [46–
48]. Identifying areas with landslide potentials can be conducted by obtaining high-quality aerial 
images of the studied region, creating a topographic map of the area using photogrammetry, and 
analyzing the topographic map using geographic information system (GIS) techniques [47,49,50]. 
Aerial images captured using drones equipped with real-time kinematic positioning (RTK) GPS 
systems often yield a much more accurate topographic map [51]. Additionally, using ground 
control points (GCPs) can further improve the accuracy of the topographic maps created using 
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aerial images [49]. To Identify the slopes with potential for landslides, first, a topographic map or 
a digital terrain model (DTM) of each slope needs to be obtained. The images captured using 
drones need to be processed using photogrammetry techniques to create a topographic map or 
a DTM of the slope. In the photogrammetry process, SFM techniques are used to create a 3D 
model of the surveyed area and then generate a DTM model of the slope. The DTM models 
created in the previous step then can be imported into a GIS platform to perform further 
analyses. The required software systems, therefore, are a photogrammetry software solution 
capable of creating a DTM model of the slope and a GIS platform for handling the created DTM 
model and the assessment factors. Commercial photogrammetry software such as Pix4Dmapper 
[52], Agisoft [53], and DJI Terra [54] are some examples of the current accessible software that 
are capable of performing the required processes. Slope saturation by rainwater is one of the 
main landslide causes [49]. Drones capable of carrying a TIR camera, and heavier payloads such 
as ground penetrating radar sensors can be used to monitor the moisture content of a slope, 
which can provide a timely warning prior to the failure [55,56]. Monitoring the stability of the 
slopes with the potential for landslides by estimating their moisture content is somewhat new 
and requires developing non-commercial frameworks [48,55,56]. 

Mapping a landslide post-failure topography is the first step in disaster recovery efforts to 
examine the stability of the site post-failure, create a map of the affected region for designing 
the proper stabilization plans, estimate the volume of the materials needed for reconstruction, 
and determine the causes of the landslide [46,57–59]. A drone system equipped with RTK 
modules and coupled with GCP GPS receivers (similar to the hardware needed for identifying 
areas prone to landslides) is proven to produce an accurate 3D map of the landslide [46,59]. 
Although using optical images can result in highly accurate topographic maps, LiDAR scanners 
can map an area with more vegetation coverage more accurately due to the fact that the light 
pulses produced by a LiDAR scanner can penetrate through openings of the vegetation and 
reflect from the ground yielding a better representation of the actual terrain [58]. Mapping a 
landslide post-failure similar to identifying the slopes with potential for landslides requires 
creating a DTM model of the slope and then analyzing the model in GIS software or CAD software 
[46,57,59]. 

2.3 Drone-Assisted Flooding Survey and Assessment 
Floods are one of the most common natural disasters which account for about a third of total 
losses caused by natural disasters [60–62]. The majority of the streams in the Cumberland and 
Tennessee river basins experience a major flood with a recurrence interval of 1 to 50 years 
[63,64]. Flood risk assessments, identifying flooded areas during floods, and post-flood damage 
evaluations are essential parts of disaster preparation, response, and recovery efforts. However, 
traditional techniques for performing the assessments are relatively slow, may be low in 
resolution, and in certain cases simply are not practical [61,65,66]. For example, post-flood 
damage evaluations immediately after the flood cannot be performed using traditional surveying 
equipment. drones can offer robust flood risk assessments, identify the flooded areas during 
flood response efforts, and evaluate post-flood damages [65,67,68]. 

Creating a topographic map of watersheds and basins is the initial step in flood risk assessments. 
Coveney & Roberts [67] proposed using drone-based photogrammetry data to create river flood-
risk models. The drone employed in this study was a SenseFly Swinglet CAM [69] fixed-wing 
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aircraft. In addition, Coveney & Roberts [67] implemented various numbers of GCP sets with the 
drone photogrammetry data to discover the optimal number of GCPs needed for producing 
reliable spatial measurements. Annis et al. [60] utilized a similar approach as Coveney & Roberts 
[67] by using drones coupled with GCPs for assessing flood risk. Moreover, in addition to 
comparing drone-generated flood-risk assessment maps with available public flood-risk 
assessment maps, they compared the drone-generated maps with LiDAR-generated maps. The 
drone-generated flood-risk assessment maps were found to be significantly more accurate than 
the available public flood-risk management maps and as accurate as the maps created by LiDAR 
scanning. Optical photos acquired using drones can produce highly accurate flood-risk 
assessment maps where the stream depth is shallow and the vegetation is not dense; however, 
they cannot be used where the stream is deep and the vegetation is heavy [61]. LiDAR scanning 
by drones is a viable solution for relatively deep streams and areas covered by thick vegetation 
[61]. 

Drone optical photos and data can also be employed for detecting flooded areas for direct 
disaster response activities [62,65]. For this purpose, the affected area must be surveyed, and 
the flooded areas must be identified from the survey. Popescu et al. [62] developed an algorithm 
that can identify the flood extents based on segmenting images acquired by drones into flooded 
pixels and non-flooded pixels. Although this technique can yield fairly accurate results in wide-
open areas, it falls short in detecting flood extents underneath vegetation canopies [65]. Optical 
granulometry is a technique for identifying grain size distribution based on images that can be 
employed post floods to detect changes in flood depositions, embankments, and rip-raps [68]. 
Optical granulometry requires capturing high-quality images of the affected area, where the 
individual soils grains are visible. Langhammer et al. [68] used drone-based optical images to 
compare the flood depositions pre and post-floods. Langhammer et al. [68] concluded that 
drone-based optical granulometry is capable of detecting the changes in flood depositions pre 
and post-floods. 

The software needed for creating flood-risk assessment maps from drone collected data can be 
divided into two categories. First, a photogrammetry solution should be used to create a DTM of 
the watershed. The quality of the flood-risk assessment maps that can be generated from the 
created DTM by the photogrammetry software is highly influenced by the accuracy of the 
elevations in the DTM model. Villanueva et al. [66] concluded the flood-risk assessment maps 
created using Agisoft PhotoScan [53] are significantly closer to the reference flood-risk 
assessment maps. Second, the generated DTM model can be imported into various hydraulic 
modeling or GIS software solutions (like ArcGIS [70]) to generate flood-risk assessment maps 
[60,66,67]. Detecting flooded areas during disaster response efforts requires image 
segmentation to identify the areas covered by water [62,65]. This process includes identifying the 
pixels representing water bodies, which can be performed by image processing software. 
However, as noted by Hashemi-Beni & Gebrehiwot [65]  drone-based optical images might not 
be sufficient to detect water bodies underneath vegetation canopies. Hashemi-Beni & 
Gebrehiwot [65]  developed a CNN coupled with a region growing (RG) method to detect the 
water bodies underneath thick vegetation covers. This coupled technique uses previously 
established flood detection surveys to train the CNN for detecting water bodies underneath 
vegetation that is not visible in the acquired optical images. Comparing the final output of the 
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CNN-RG method with the reference validation data, this technique is proven to be highly accurate 
for detecting flooded areas using drone acquired optical images. 
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Chapter 3  Methodology  
In Chapter 3, first the hardware system and configurations that are suitable for disaster relief 
efforts are reviewed, which can be used for collecting data. In addition, considerations on setting 
up and operating different drone systems are discussed. Second, a software tools and a 
generalizable framework are proposed to process the drone-collected data to acquire situational 
awareness during disaster relief efforts. The data processing framework consists of steps for 3D 
reconstruction, object detection using deep learning-based techniques, and drone mission 
planning using optimization methods. The proposed framework can be customized and applied 
in various disaster scenarios. 

3.1 Hardware System Configurations and Considerations 
TABLE I summarizes the drone hardware systems used in recent disasters. TABLE II summarizes 
the sensor configurations for using drones in different types of disaster scenarios. The identified 
drone hardware, system configuration, and application scenarios could provide useful reference 
and insights for TDOT to select, test, and use drones and integrated sensing technologies for 
disaster relief efforts. 
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TABLE I 
DRONES USED IN RECENT DISASTERS 

Year Disaster UAS 
Fixed-
wing Rotary Search Mapping 

Structure 
inspection 

2005 Hurricane Katrina 

AeroVironment  n/a   n/a 

Evolution  n/a   n/a 

ISENSYS T-Rex n/a    n/a 

Silver Fox  n/a   n/a 

2005 Hurricane Wilma ISENSYS T-Rex n/a  n/a   

2007 Berkman Plaza 2 collapse ISENSYS IP3 n/a  n/a n/a  

2010 Haiti Earthquake Elbit Skylark   n/a  n/a 

2011 Christchurch Earthquake Parrot AR.Drone n/a  n/a n/a  

2011 Tohoku Earthquake Pelican   n/a n/a  

2011 
Fukushima Nuclear 
Emergency 

Honeywell T-Hawk 
n/a 

 n/a 
  

2011 
Evangelos Florakis Naval 
Base Exploration     

AscTec Falcon n/a  n/a   

AscTec 
Hummingbird 

n/a 
 n/a 

  

2011 Thailand Floods 

FIBO UAV-1  n/a n/a  n/a 

FIBO UAV Glider  n/a n/a  n/a 

SIAM UAV  n/a n/a  n/a 

2012 Finale Emilia Earthquake 
NIFTi 1 n/a  n/a n/a  

NIFTi 2 n/a  n/a n/a  

2013 Lushan China Earthquake 
HW18 (Ewatt 
HoverWings) 

    n/a 

2013 Boulder Colorado Floods Falcon Fixed  n/a n/a  n/a 

2014 SR530 Mudslides 

DJI Phantom n/a  n/a  n/a 

AirRobot 100 n/a  n/a  n/a 

PrecisionHawk  n/a n/a  n/a 

2015 Bennett Landfill SC PrecisionHawk  n/a n/a n/a n/a 

2017 Hurricane Harvey DJI Phantom 4 n/a   n/a  

2017 Hurricane Irma 
DJI Phantom 4 Pro n/a  n/a  n/a 

Mavic Pro n/a  n/a  n/a 

2017 Mexico City Earthquake DJI Phantom 4 n/a  n/a  n/a 

2018 California Camp Fire 
DJI Mavic 2 
Enterprise 

n/a 
 n/a 

 n/a 

DJI Phantom 4 Pro n/a  n/a  n/a 

  



 

 
11 

TABLE II 
SENSOR CONFIGURATIONS AND APPLICATIONS 

Application Description Example Hardware Raw data 
Process 
outcome 

Monitoring, 
forecasting, 
and early 
warning 

Create early 
warning system 

Assess landslide evolution and 
provide early warnings [71] 

RGB camera; 
GPS; IMU 

RGB image 
3D point 
cloud 

Monitor geohazards in 
reservoir region [72] 

RGB camera; 
GPS; IMU 

RGB image 
Surface 
displacement 

Standalone 
communication 
system 

Re-establish the 
damaged or 
destroyed 
communication 
infrastructure 

Provide Resilience in Wireless 
Sensor Networks [73] 

ZigBee 
wireless 
module; 
Raspberry; 
Arduino; 
Antenna 

Radio wave Network 

Mapping and 
reconnaissance 

Disaster extent 
detection 

Application of an algorithm to 
detect flood areas 
Automatically [74] 

RGB camera; 
GPS; IMU 

RGB image; 
RGB video 

Flood extent 

Generate 3D model 
of disaster sites 
 

Drone-based 3D model 
reconstruction visualization 
[75] 

Stereo 
camera; GPS; 
IMU; AHRS 

RGB image 3D model 

Use a low-cost LiDAR to 
reconstruct disaster 
environment [76] 

INS; GNSS; 
LiDAR 

Point cloud 
3D point 
cloud 

Damage 
assessment 

Visual detection of 
damaged 
infrastructure 

Detect and assess the damage 
of civil infrastructure [77] 

RGB camera; 
thermal 
camera; GPS; 
IMU 

RGB image; 
thermal image 

Location of 
affected 
properties 

Resistance and 
resilience 
measures 
identification 

Identification of residential 
properties with resistance 
Measures [78] 

RGB camera 
GPS; IMU 

RGB image 
Orthoimage, 
DEM 

Search and 
rescue 

Identification of 
safe shelter points 

Identify where to best place 
NGO camps and identify land 
that could be safer to relocate 
families  

RGB camera 
GPS; IMU 

RGB image; 
RGB video 

Map with 
location of 
points 

Detection of 
stranded people 

The use of UAS to locate 
stranded people even at night 
[79,80] 

RGB camera;  
thermal 
camera; GPS; 
IMU 

RGB image; 
RGB video; 
thermal image 

Victim 
location 

Evacuation routes 
identification 

Modeling of evacuation routes 
by using UAS as end devices of 
M2M architecture [81] 

RGB camera 
RGB image; 
RGB video 

Map of 
evacuation 
route 

There are some considerations for using drone systems during disaster relief efforts. Navigation 
by GPS positioning is common for drones that operate with a degree of autonomy. However, 
drones used for structural assessment may operate in close proximity to structures, including 
underneath bridges; thus, the loss or lack of GPS signal is a distinct possibility. Furthermore, the 
lack of GPS signal can prevent some drones from being able to even maintain a stable stationary 
position [10]. Drones must have alternate navigation systems to remain operational in GPS-
denied environments or in the event of unexpected GPS loss. One option that has been 
investigated is the use of an ultrasonic beacons system [82]. This strategy requires pre-planning 
and some deployed resources as it uses stationary ultrasonic beacons at known points to 
determine the location of a drone with a mobile ultrasonic beacon. Alternatively, stability in a 
GPS-denied environment can be achieved with the addition to the drone of a stereovision system 
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for position control and a sonar system for altitude control, both systems that require sensors 
only on the drone [10]. Another strategy is that in the event of GPS signal loss, the drone navigates 
based on an internal compass; however, if this strategy is to be relied upon, the drone’s compass 
should be recalibrated prior to flight [5]. 

As still imaging or videos are two of the main tools used by drones for structural inspections and 
close-up detailed imaging is often required, lighting conditions for drone imaging is very 
important [77]; however, lighting conditions for structural assessment are not always ideal. For 
exterior inspections, lighting conditions will vary throughout the day due to the relative position 
of the sun. Furthermore, the structure itself will serve to block the sun as in the case of the shaded 
side of a structure or the underside of a bridge. Relatively open structural systems that only 
partially block the sun may result in lighting conditions that rapidly change and include glare. The 
capability of built-in or supplemental imaging systems to adjust to changes in lighting vary and 
must be considered when selecting a system [5]. To compensate for low lighting conditions, 
drones can be configured with attached lighting systems [5]. While these lighting systems can 
improve imaging quality, their weight and energy demands will reduce the endurance of the 
drone. 

The close-up nature of many aspects of the inspections of structures with drones means that the 
ability of the drones to navigate close to a structure and to hold a particular position near the 
structure for data collection is critical to prevent collisions with the structure. The ability of a 
drone to navigate and hold position precisely is negatively affected by wind. The capacity of a 
drone depends on the physical properties of the drone as well as the hardware and software it 
is utilizing; however, in one case, it was reported that a wind speed of 10 m/s (22 mph) made 
controlled flight near a structure nearly impossible [10]. Another study noted that high-quality 
imaging of a structure could not be captured with windspeeds greater than 7 m/s (16 mph) [6]. 
Some work has been done to develop open protective shells around drones for the close 
inspection of bridges [3]; however, such solutions likely increase drone weight and introduce drag 
which will collectively reduce the endurance of the drone. The challenges presented by wind are 
exacerbated by localized air flow patterns around structures, which result in areas of effectively 
higher winds and rougher air. 

3.2 Data Processing Framework 
In this research, a generalizable framework was developed for disaster relief efforts using drones. 
The methodological approach consists of two interrelated components: 1) processing drone-
collected data, and 2) optimizing drone mission planning during disaster relief efforts. For data 
processing, 3D scene reconstruction and AI-based image processing can be integrated to help 
assess the situation, and extract disaster-relevant information for TDOT to make informed 
decisions. For 3D reconstruction, the SFM techniques are often employed. The SFM technique 
involves the below steps [9]. 

1. Features are detected for each of the images and metadata related to camera properties are 
extracted. 

2. Features are matched across image pairs.  
3. 3D reconstruction is initiated using an image pair with sufficient overlap and the associated 

camera properties of those images. 
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4. By using image features and an estimation of the camera pose, data from additional images 
are considered in the 3D reconstruction in an iterative process. The result of this is a sparse 
3D point cloud. 

5. The sparse 3D point cloud is then transformed into a dense 3D point cloud by using a pixel-
wise image-matching algorithm to consider every pixel of the image set, not just features. 

Commercial software such as Pix4Dmapper [52] and Agisoft [53] can also be used for 3D scene 
reconstruction. Figure 3-1 shows examples of 3D reconstruction for collapsed structures during 
Tennessee Tornado disasters and for bridge infrastructure systems. 

 
Figure 3-1 3D Reconstruction of Structures from Drone-Collected Images. 

To recognize the object of interests (e.g., structure damages) from images captured by drones, a 
real-time deep learning-based network was designed. YOLO (You Only Look Once) was adapted 
in this study, which is a fast real-time multi-object detection algorithm [83]. Object detection in 
YOLO is done as a regression problem to estimate bounding box coordinates and class 
probabilities. CNN is employed to detect objects with a single forward propagation through the 
network, which can be trained in an end-to-end manner. The YOLOv5 network [84] used in this 
study is the latest upgrade from YOLOv3, adding mosaic, CSPNet, and SPPF module. YOLOv5 
could be divided into YOLOv5-x6, l6, m6, and s6 based on the number of learnable parameters 
in the network. In this report, YOLOv5-l6 was selected to ensure the detection accuracy and 
inference speed. Figure 3-2 presents the YOLOv5-l6 network architecture that consists of three 
components that are backbone network, detection neck, as well as four detection heads. The 
input images were first preprocessed using the mosaic method, which is a data augmentation 
method to improve network performance on small objects. The backbone network was used to 
extract features at various levels from images. This network was built based on Cross Stage 
Partial Networks (CSPNet) and Spatial Pyramid Pooling Fast (SPPF) layer. The CSPNet was used to 
reduce the computation cost while maintaining the inference power of the network by CSPNet 
integrating the gradient changes into the feature map from beginning to end. Each CSPNet 
network consists of three convolutional layers. SPPF was used to extract fine and coarse 
information by simultaneously pooling on multiple kernel sizes (5, 9, 13). The SPPF is the last layer 
of the backbone. 

The detection neck aims to get feature pyramids from the backbone network. The feature 
pyramid was used to identify objects in various sizes and scales. The detection neck consists of 
six CSPNet Blocks. The four feature maps with different scales were used to predict targets of 
various sizes. Finally, these feature maps were divided into grids, and each grid consists of three 
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anchors to predict the bounding box for the object. Note that anchor sizes are generated by k-
means clustering on the labeled bounding box dimensions. For each grid, the network estimated 
the bounding box coordinate offset and classification probability. With adequate training data 
with respect to the disaster scenes and objects, the framework can be used to train the model 
for rapid image processing. In this project, the framework was tested using data collected from 
the Tennessee tornado disasters and used it for detecting and assessing building collapse. 

 

Figure 3-2 YOLOv5-l6 Network Architecture. 

After recognizing the objects of interests (damage levels for different infrastructure systems), the 
drone needs to conduct a detailed investigation at each damaged site. The sequence of such 
investigation is related to the distance between damaged facilities and the drone, as well as the 
level of damages. This is because the extent of damage is an important indicator of property 
losses and investigation priorities. The drone needs to optimize the disaster survey plan 
according to detected damaged infrastructure with their associated severities to maximize the 
efficiency. To this end, the drone mission planning was formulated as a Vehicle Routing Problem 
with Profits (VRPP) [85]. The drone needs to survey a total of n damaged structures. Let G = {V, E} 
be a graph. V = {1, …, n} is the vertices of the graph, which represent damaged structures. Each 
pair of vertices i and j forms an edge {i, j} ∈ E. Let the structure damage index pi ≥ 0 be associated 
with each vertex i ∈ V (with p1 = 0) and a distance dij ≥ 0 be associated with each edge (i, j) ∈ E. Let 
xij be a binary variable which equals to 1 when the drone travel from i and j, and 0 otherwise. Let 
yi equal to 1 if i ∈ V is visited by the drone route, and 0 otherwise. 

The objective was to maximize the total damage index visited by the drone given the traveled 
distance constraint. The damage index pi is defined as 1, 3, and 5 for light, severe, and debris, 
respectively. The problem can be formulated in Eq. (3-1). 
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subject to  

 

 

 

 

 

 

 
Constraints (3-2) and (3-3) are assignment constraints to ensure one edge enters and one edge 
leaves each visited vertex. Constraints (3-4) eliminate subtours. Constraint (3-5) is the maximum 
distance constraint on the route. Constraint (3-6) imposes to survey the structure with damage 
index not smaller than pmin. Finally, Constraints (3-7) and (3-8) are variable definitions. 

Since the VRPP is NP-hard, the Tabu search (TS) [86] was adapted in this study to solve the 
problem. The TS is a metaheuristic algorithm that can be used for solving optimization problems. 
The method consists of 9 steps that are detailed as follows. The first step is to determine the tour 
length D and start building a tour until the length of route T reaches D. Vertex j was randomly 
selected in the tour T and add the vertex j ∉ T which has the minimal ratio (dij + djk - dik)/pj. The 2-
opt optimization was applied on the generated list to delete two of the edges in the tour path 
and reconnect them in the remaining possible way. The second step determines all insertion 
partitions based on proximity measure and retains 10 of them. The dispersion index of the 
generated list R is given by Eq. (3-9). 

 
The proximity measure between to non-empty list R and S is defined in Eq. (3-10). Note that if 
𝑅𝑅={i} and 𝑆𝑆={j}, then Δ(𝑅𝑅, 𝑆𝑆) = dij. The proximity measure defines four partitions of V \ {1}, and each 
partition contains a cluster of vertices.  

 
The third step was used to determine the best insertion candidate from a randomly selected 
partition. The value of insertion of a cluster 𝐶𝐶𝑟𝑟𝑟𝑟′  from the partition Pr was calculated by dividing 
added damage index by distance. The gravity center 𝑣̅𝑣𝑘𝑘 of 𝐶𝐶𝑟𝑟𝑟𝑟′  was computed for every cluster Pr. 
Eq. (3-11) can then be used to evaluate the preliminary move. 
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The cluster 𝐶𝐶𝑠𝑠𝑘𝑘∗
′  corresponding to maxk  was selected. Eq. (3-12) gives the exact move 

evaluation for 𝐶𝐶𝑠𝑠𝑘𝑘∗
′ . 

 
The fourth step was used to determine the set of vertices Hij candidate to be removed. Consider 
a solution T = {1, … , 𝑗𝑗0, 𝑖𝑖1, … , 𝑗𝑗1, 𝑖𝑖2, … , 𝑗𝑗𝑘𝑘−1, 𝑖𝑖0, … , 1}, where (𝑗𝑗0, 𝑖𝑖1), …, (𝑗𝑗𝑘𝑘−1, 𝑖𝑖0) have the longest edge 
in the route. The number of the longest edges was set to m, which was estimated between 2 and 
half of the maximum between 4 and the number of vertices in the initial tour. The sets Hij were 
defined as 𝐻𝐻𝑖𝑖1 , … ,𝐻𝐻𝑖𝑖𝑚𝑚−1𝑗𝑗𝑚𝑚−1.  

The fifth step is used to determine the best deletion candidate from deletion chains, which is 
given in Eq. (3-13). The equation is associated with distance over lost damage index.  

                                                             
The sixth step compares the results of insertion and deletion and applies the best one. If the best 
move is deletion, then declare all vertices of deletion tabu for a random number of iterations. 
The seventh step applies 2-opt algorithm when the iteration count is a multiply of 5. The eighth 
step is used to improve the tour quality and make it an incumbent solution. The 3-opt algorithm 
was used to improve the newly generated solution when it has a better objective than the 
incumbent solution. Finally, if there hasn’t been an improvement in 1000 iterations, the 
incumbent solution was assigned as the current solution and shuffle the route and clear the tabu 
list. The outcomes could help optimize drone mission planning, making the disaster 
reconnaissance more effective and efficient. 

The proposed methodological framework could be adapted for application in different types of 
disasters and can be integrated with other commercial software and tools for acquiring 
important disaster relevant information for drone mission planning during disaster relief efforts.
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Chapter 4 Results and Discussion 
In Chapter 4, the use cases of using drones in different types of disaster scenarios and associated 
workflows are provided. The proposed methods were also tested using data collected from 
disasters such as tornado disaster occurred in the state of Tennessee and field demonstrations 
to validate the proposed methods and workflow. The use cases for post-disaster survey, landslide 
investigation, and flooding were discussed and insights for disaster preparedness, mitigation, 
response, and recovery are provided. Furthermore, the benefits and potential implementation 
for TDOT are also discussed herein. 

4.1 Post-Disaster Infrastructure and Structure Survey 
The use of drones for structural inspections has several key benefits compared to the traditional 
approach including 1) potential increases in the effectiveness and/or efficiency of the inspection 
and 2) increased safety of the inspection. Different methodologies and workflows for 
implementing drones for post-disaster infrastructure and structure surveys have been published 
including one by [8]. This methodology and its presentation provide a good example as it could 
be applied to many different structural assessments. A methodology, which is adapted from the 
methodology presented by [8], is represented by the flowchart shown in Figure 4-1 and is 
discussed in detail below. 

 
Figure 4-1 Flowchart for drone-assisted structural assessment (Adapted from [8]). 

Step 1: Define the task to be undertaken and its purpose. This depends on the situation 
and may include tasks such as the overall assessment of the structure to comply with periodic 
inspection requirements, the assessment of particular members to determine the 

1. Task Definition

2. Assessment Criteria

3. Preparation

4. Flight Path Generation

5. UAV-based Data Acquisition

8. Structural Condition Assessment

6. Data Processing

7. Mechanical Interpretation
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progression of deterioration at a trouble spot, or post-disaster assessment to determine if 
there is visible damage to the structure. 

Step 2: Determine criteria to perform desired structural assessment. These criteria will 
depend on the structure being assessed, the types of members, and the construction 
materials. Potential criteria may include crack dimensions, spalled area percentages, rusted 
area percentage, and bearing deformation. When possible, numerical values should be 
established for the criteria that will determine structural condition; for example, the defined 
values of bearing deformation that would change the assessed condition of the structure. 

Step 3: Prepare for the mission. In this step the points on the structure or portions of the 
structure in which data will be collected will be identified by considering construction plans, 
past assessments, and recent observations on the structure’s state. The data types will be 
chosen for each data acquisition point to generate values to compare against the set 
assessment criteria. The necessary data types will aid in the selection of the drone and 
potential additional sensor package needed for the assessment. Obstacles that could impede 
a drone will be identified along with a point for launch and retrieval of the drone. This step 
could be aided by pre-inspection observations made by a drone, as described above. 

Step 4: Generate the flight path. Regardless of if the drone will be piloted remotely or if its 
flight will be automated, a flight path must be established before flight. This flight path will 
move the drone from the launch point to and between the identified points of measurement 
and back to the launch point while avoiding hazards that have been identified. This flight path 
will also serve as a plan for the flight and should consider at each data collection point the 
sensors needed at that point, the orientation of the drone and the sensors at that point, and 
the time needed for the data collection at that point. The flight path should be as optimized 
as practical to minimize the total flight time required. The endurance of the drone must be 
conservatively accounted for in this flight plan and the flight should be broken up into 
multiple trips if needed. For automated flight, the results of the efforts of this step will be 
programed into the flight planning software utilized. 

Step 5: Data is acquired with the drone. This data will be acquired based on the flight path. 

Step 6: Once data is acquired, it needs to be processed. This processing will depend on 
the type of data that was acquired and the criteria that will be used to assess the structure. 
In many cases this data processing will use images, video, or other data to generate 3D 
representations of portions of the structure through photogrammetric techniques. After 
initial processing of the data, assessment criteria values will need to be extracted. This can 
be done in a manual manner or an automated manner depending on the criteria and the 
software available. For example, using SFM, images can be processed to create 3D 
representations of the state of a structural member; this 3D model can then be further 
processed using manual or automated techniques to identify and measure cracks. 

Step 7: These results can then be used to provide a mechanical interpretation. Based 
on a collection of the features identified and potentially measured and the mechanics of the 
structure considered, a mechanical explanation for the behavior observed can be postulated. 
For example, the pattern of cracks observed may suggest the yielding of a component of the 
structure. In this step, structural analysis software could be used to investigate a potential 
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mechanical interpretation and compare the predicted behavior with the behavior observed 
from the structure. 

Step 8: A structural assessment can then be made. The assessment of the structure and 
components can be completed based on the processed data, any subsequent mechanical 
interpretation, the assessment criteria, the assessment task being performed, and any 
provided guidelines regarding the classifications resulting from the assessment. 

The above structural assessment methodology can be implemented for planned structural 
assessments or in the event of the assessment of damage or potential damage to a structure 
from a disaster. The flight planning portion of this assessment requires significant resources and 
time; therefore, it may be advisable to generate and plan in advance for several general post-
disaster structural assessment scenarios in order to be able to quickly respond to a disaster. 

To test the proposed data processing framework for post-disaster structure survey and 
assessment, the designed network was first trained using the Instance Segmentation in Building 
Damage Assessment (ISBDA) [87]. The ISBDA dataset consists of a total of 1030 images extracted 
from ten aerial videos with a length of about 84 minutes collected from social media platforms. 
After removing images without bounding box annotation, the total number of images is 817. The 
videos were recorded using drones after severe hurricane and tornado disasters occurred in 
various states across the United States. The structure damage consists of three levels that are 
slight (visible cracks or appearance damage), severe (partial wall or roof collapse), and debris 
(completely structural collapse). Figure 4-2 presents example images with different damage 
levels. 

 

Figure 4-2 Example of annotated images. The blue, green, and purple bound boxes denote damages in 
slight, severe, and debris levels, respectively. 

The network was trained on a workstation running Windows 10 with Dual Intel Xeon Gold 5122 
CPU, 64 GB RAM, and NVIDIA Quadro P5000. The Stochastic Gradient Descent (SGD) optimizer is 
used to train the network. The pretrained model on COCO dataset [88] was used to initialize 
network weights. The batch size was set to 48. The network was trained for a total of 30 epochs. 
The input images were resized to 640×640. The provided train-validation set was used for the 
training [87]. In total, the training set consists of 638 images, and the validation set consists of 
219 images. The model with the highest performance on the validation set was used for further 
evaluation. 

The hyperparameters of the model control various aspects of training, and it is challenging to 
find optimal values. YOLOv5-l6 contains a total of 29 hyperparameters, which are related to 
learning rate, loss function, data augmentation, etc. In this study, the hyperparameter evolution 
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approach was used to find optimal values using the Genetic Algorithm (GA) optimization 
algorithm. The mutation-based genetic operator was used with a probability of 0.9 and a variance 
of 0.04. The epoch was set to 30 and the iterative was set to 100. Mean average precision over 
different IoU thresholds between 0.25 and 0.5 was used as the metric to determine the optimal 
parameters. Figure 4-3 shows example plots for some key optimized hyperparameters. 

 

Figure 4-3 Optimized Hyperparameters for The Network Training. 

To quantify the network performance, the recall, precision, mean average precision at IoU 
threshold 0.25 and 0.5 were used. Precision is used to measure the correctly classified positive 
against the total number of classified positives, which is defined in Eq. (4-1). Recall measures the 
predictive power of the network in identifying all the positive elements, which is given in Eq. (4-
2). The IoU threshold is set to 0.2 for precision and recall calculations.  

 

 
Following COCO setting, AP is the average over 10 IoU levels on the three damage categories. 
Average precision (AP) is the area under precision-recall curve that is defined in Eq. (4-3). mAP for 
object detection is the average of the AP calculated for all the classes, which is given in Eq. (4-4). 
mAP0.25:0.5 is the average over 10 IoUs starting from 0.25 to 0.5 with a step size of 0.05.  
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Furthermore, F1 score is used to set the inference confidence threshold for the evaluation, which 
is given in Eq. (4-5).  

 
Figure 4-4 shows the relationship between F1, precision, recall score and prediction confidence 
on the validation set of the ISBDA dataset. The results indicate that the highest F1 score is 0.43 
at a confidence of 0.11. The precision score increases with an increasing confidence threshold 
value and the recall score decreases with the increasing threshold value. Furthermore, according 
to the recall score, light building damage has the highest ratio of correctly predicted positives to 
true positive elements at different thresholds. 

 

Figure 4-4 The Relationship Between F1, Precision, Recall Score and Prediction Confidence. 

TABLE III presents the model performance on the validation set of the ISBDA dataset for each 
damage level. The overall precision, recall, mAP0.25, mAP0.5, and mAP0.25:0.5 are 0.406, 0.473, 0.399, 
0.289, and 0.345, respectively. The results of the proposed method indicate a strong variation in 
performance across different damage levels. Particularly, the proposed method results in the 
highest performance on the light building damage followed by severe damage. This is because 
the slight building damage has the largest amount of samples in the training dataset, and debris 
has a relatively small sample size. 

TABLE III 
DEEP LEARNING BASED STRUCTURE DAMAGE CLASSIFICATION FROM DRONE-COLLECTED DATA 

Class Labels Precision Recall mAP0.25 mAP0.5 mAP0.25:0.5 
All 785 0.406 0.473 0.399 0.289 0.345 

Light 528 0.391 0.621 0.52 0.347 0.427 
Severe 169 0.425 0.491 0.361 0.265 0.314 
Debris  88 0.402 0.307 0.318 0.256 0.293 

Figure 4-5 illustrates four example results of damage detection in the validation set of the 
ISBDA dataset. The results indicate that the proposed method can accurately detect building 
damage and its associated level. The blue ellipses highlighted in the image show the damaged 
buildings that are not annotated in the dataset, but successfully detected by our network. 
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Figure 4-5 Visualization of Detected Damaged structures. 

The research team also conducted a drone survey to collect aerial video data following tornado 
disasters in Tennessee. Figure 4-6 presents the example results of damage detection. The 
proposed method can detect structure damages from drone collected images, demonstrating 
its applicability and potential for disaster survey. Figure 4-7 shows the drone survey trajectory 
optimized using the proposed method. The center of the bounding box is treated as 
coordinates for the building. The drone needs to visit damaged structures to collect more 
information for further analysis. Figure 4-8 presents the optimized planning for the drone 
under different maximum distances constraints. The results indicate that the proposed mission 
planning method can identify the most efficient path for the drone to implement given a 
distance constraint. 

 

Figure 4-6 Detected Building Damages from Post-Tornado Structure Surveys. 
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Figure 4-7 Drone Survey Trajectory and Overlaid Detected Damaged Buildings. 

 

Figure 4-8 Optimized UAV Mission Plans for Different Distance Constraints. 

The use cases and workflow for using drones to map subsurface infrastructures were also 
investigated. A 3D map of the ground needs to be created using a radio signal that can penetrate 
the scanned area [35,37]. This process first starts with flying an unmanned aerial vehicle (UAV) 
with a GPR module, TIR camera, or a flat speaker over the interest area. The reflected radio 
signals then need to be received in order by a GPR receiver, TIR camera, or an LDV scanner. Upon 
acquiring the reflected radio signals, a 3D map of the subsurface infrastructure can be 
reconstructed using processes such as SAR algorithms and surface vibration measurements. 
Figure 4-9 displays a flowchart of the process of mapping subsurface infrastructures using GPR 
techniques or sound-induced surface vibration systems. Various subsurface infrastructures exist 
underneath the roads in Tennessee that are aging and not all of them are properly mapped. The 
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recommended practice by the report provides a fast and reliable method for TDOT and other 
agencies in the state of Tennessee to map the existing subsurface infrastructures and avoid 
causing unwanted damage to them by accidental excavations. 

On the other hand, for inspecting subsurface infrastructure that has been mapped previously, 
TIR cameras deem to be the most powerful tool if the fluid carried within the buried pipeline has 
a heat gradient relative to the surrounding medium [31,33]. The inspection process begins with 
flying a TIR camera-mounted UAV over the subsurface infrastructure and acquiring TIR scans of 
the pipeline. The live-feed TIR scans can either be used to look for potential leakages or be saved 
to be post-processed and inspected to detect potential leakages. The TIR scans post-processing 
can be conducted using commercial software like FLIR Thermal Studio Suite [89]. Figure 4-10 
shows the procedure for inspecting buried pipelines to detect potential leakages. The process 
suggested in this report provides a framework to identify any potential fluid leakage from the 
infrastructure systems underneath vital roads in the state of Tennessee. Implementing such a 
process not only provides an opportunity to inspect subsurface infrastructures following natural 
disasters in Tennessee but also can prevent disasters caused by high-pressured or flammable 
fluid leakages. In order to examine the proposed procedure for inspection of subsurface 
infrastructures, a demo flight was conducted on the University of Tennessee-Knoxville’s steam 
lines. The thermal camera used in this flight was a FLIR Duo Pro R [90] with a resolution of 640 x 
512 mounted on a DJI Matrice M600 Pro [38] equipped with a D-RTK system. The flight altitude 
varied between ~50 ft to 89 ft above the ground level (A.G.L.) depending on the terrain and the 
surrounding environment and obstacles. The acquired thermal images from the flight were 
analyzed using the FLIR Thermal Studio Suite. Figure 4-11 shows the thermal photo obtained 
from the steam line and the steam vault. Based on the acquired images the presence of the 
steam line has increased the surface temperature from about 28° C to ~32° C whereas the 
surface temperature directly above the steam vault has increased to ~38° C. In addition, locations 
of two potential leakages were identified using the TIR camera’s live feed. 

 
Figure 4-9 Flowchart for Mapping Subsurface Infrastructures. 
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Figure 4-10 Flowchart for Identifying Potential Leaks from Subsurface Infrastructures. 

  
(a) RGB image (b) Thermal image 

Figure 4-11 Aerial Image of The Steam Line and The Steam Vault. 

Bridge pier scour inspections require mapping the stream bed around the piers of the bridge 
being inspected. The inspection can be performed by various types of underwater drones. Figure 
4-12 shows a flowchart summarizing all needed hardware, software, and steps of bridge pier 
scour inspections. 19721 bridges exist in the state of Tennessee [91] and more bridges are being 
constructed each year in the state. Implementing a practice similar to the recommended practice 
by this report is a critical part of ensuring the safety of the existing bridges in the state. 
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An RTK-GPS module can be coupled into the underwater drone’s GPS positioning system to 
improve the navigation and mapping results [92]. In addition, using a 2 MHz sonar sensor instead 
of a 1 MHz sonar sensor can further improve the mapping quality and accuracy [23]. Upon 
surveying the bridge piers, a map of the streambed can be reconstructed from the acquired 
sonar radiographs. The reconstructed map can be imported into CAD software to be viewed and 
search for potential scours around the bridge piers. Moreover, if an underwater drone is used in 
the inspection, the acquired images or even the live feed can be used to inspect the bridge piers 
for structural damages and cracks. 

 
Figure 4-12 Flowchart for Bride Pier Scour and Structural Inspection. 
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4.2 Drone-Assisted Landslide Disaster Relief 
The use cases and workflows for using drones in landslide disaster were also discussed herein. 
To identify a slope prone to landslides, a cloud point and an orthomosaic map of the slope need 
to be created. Information on primary factors causing landslides can then be overlaid on the 
generated map using GIS tools [47,50]. Pushpakumara & Madushanka [50] suggested the 
following factors as the primary causes of landslides: bedrock geology, hydrology & drainage, 
surface overburden, slope angle range, land use, and landforms, where these factors do not 
necessarily have equal probabilities of inducing a landslide (TABLE IV). A score can be assigned to 
each of the mentioned landslide factors based on the properties of the surveyed slope. A final 
probability score can be achieved by performing a weighted average on the 6 different scores 
assigned to the slope. The probability of a landslide can then be examined using TABLE V. Figure 
4-13 shows the flowchart of the procedure to identify slopes with the potential for landslides. By 
implementing this practice TDOT or other agencies will be able to identify and rank the slopes 
that might experience landslides in the future. Regular monitoring procedures can then be set in 
place to ensure the safety of these slopes is not compromised. 

TABLE IV 
PRIMARY FACTORS CONTRIBUTING TO LANDSLIDES [50] 

Slope Maximum Weighting 
1 Bedrock Geology 20 
2 Hydrology & Drainage 20 
3 Surface Overburden 10 
4 Slope Angle range 25 
5 Land use 15 
6 Land forms 10 

Total 100 

TABLE V 
PROBABILITY OF A LANDSLIDE [50] 

Total Score Slope Failure Probability 
>70 Higher hazards 

55-70 Medium hazards 
40-55 Low hazards 
40> Not likely 
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Figure 4-13 Flowchart for Identifying Slopes with Potential for Landslides. 

Monitoring slopes with potential for landslides consists of using TIR/GPR/spectrometer sensors 
installed drones to estimate a slope’s soil moisture content. First, a correlation between the 
results of any of the suggested sensors and soil moisture content needs to be established 
[48,55,56]. Regular drone flights can then be conducted on any slopes with the potential for 
landslides to determine the soil’s moisture content. If the slope’s moisture content exceeds the 
predetermined maximum safe moisture content, the slope either needs to be stabilized or 
evacuation measures need to be taken. The process of monitoring slopes prone to landslides can 
be summarized as the flowchart displayed in Figure 4-14. During each rain season, hundreds of 
small and large landslides occur in Tennessee, which most take place upon slope water 
saturation. Therefore, implementing the practice suggested in this report can help in preventing 
landslides and ensuring the safety of the drivers and roads in the state of Tennessee. 
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Figure 4-14 Flowchart for Monitoring Slopes with Potential for Landslides. 

The first step in landslide disaster relief efforts is to map the affected area [59]. A relatively similar 
procedure to identifying the slopes with the potential for landslides can be performed to obtain 
a cloud point and an orthomosaic map of the slope. However, in this case, the results can be used 
to calculate the volume of the debris needed to be removed, design the new slope, and estimate 
the material required for reconstruction. Figure 4-15 shows the procedure of mapping a landslide 
using drones. As noted previously, hundreds of landslides (small or large) happen in Tennessee 
each year. First, a significant volume of debris must be moved post each landslide. The temporary 
shoring mechanisms and repair designs are then needed to open a road affected by the landslide 
to traffic. The recommended procedures here ensure the required steps for repairing a failed 
slope take place smoothly and in a timely manner. 
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Figure 4-15 Flowchart for Mapping Landslide Post-Failure. 

To examine the procedure of mapping a landslide, a complete topographic survey of a small 
shallow slope failure using a drone and employing photogrammetry was conducted by the 
research team. Figure 4-16 d shows an aerial image of the slope failure. In addition, to determine 
the dependency of the results on the flight height, flying at two different elevations was 
proposed. The selected flight elevations based on the site topography and obstacles were 196 
and 262 ft A.G.L. . The flights were conducted using a DJI M210 RTK drone coupled with a 
Zenmuse X5s camera which is capable of capturing geo-located images with centimeter accuracy. 
Increasing the flight height from 196 ft A.G.L. to 262 A.G.L., which covered a considerably larger 
region of the slope, increased the total flight time from 2 minutes to 3 minutes and resulted in 
collecting 46 geo-located images instead of 16. Additionally, the accurate locations of 5 GCPs were 
collected (3 at the bottom of the slope and 2 at the top) using Propeller AeroPoints GPS receivers. 
Three of the GCPs were employed in the processing and calibration of the obtained geo-located 
images and the other 2 GCPs were used in the verification and determination of the survey 
accuracy. The obtained 2-dimensional geo-located images from the drone surveys were analyzed 
using the Pix4DMapper software. Figure 4-16 a, b, and c show the orthomosaic map, the DSM 
model, and the topographic map of the affected area, respectively. Comparing the accuracy of 
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the 3D point cloud generated from the flights at different heights reveals that the accuracy of the 
coordinates of the generated points are extremely similar while the flight at the higher elevation 
covered a significantly larger area without increasing the flight time and processing time 
significantly. 

  
(a) Affected area’s orthomosaic map (b) Affected area’s DSM model 

  
(c) Affected area’s topographic map (d) Aerial image of the slope failure 

Figure 4-16 Demo Flight Results for Mapping a Small Shallow Landslide. 

4.3 Drone-Assisted Flooding Disaster Relief 
The first step in generating flood-risk assessment maps is to create a DTM of the area of interest. 
The process of creating DTM is identical to the process introduced earlier for surveying slopes 
prone to landslides. The area of interest’s historical flood data is another necessary component 
of generating flood-risk assessment maps. The created DTM and the historical flood data can 
then be overlaid in GIS software such as ArcGIS [70] to generate flood-risk assessment maps 
[60,61,66,67]. Flood-risk assessment maps not only can be used to identify the areas that will be 
submerged during a flood but also can be employed for estimating the floodwater volume or the 
area of the flooded region. Figure 4-17 shows the flowchart for generating flood-risk assessment 
maps using UAV-based optical images. In cases water level gauges are used for increasing the 
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accuracy of the river’s stream depth, as recommended by Langhammer et al. [68], these 
additional data points can be treated as GCPs in the photogrammetry process. Flood-risk 
assessments are the initial step in designing and implementing measures for flood preparation. 
Implementing the suggested practices by this report help TDOT and other state agencies to 
identify the areas with high flooding risks and prepare the roads and other existing 
infrastructures accordingly. 

 
Figure 4-17 Flowchart for Flood-Risk Assessment Mapping. 

Identifying the flooded areas during disaster relief efforts, start with flying over the area of 
interest and collecting optical images. The acquired images can be segmented into flooded areas 
and non-flooded areas using image processing techniques or a CNN [62,65]. The map created 
from the image processing techniques or neural networks identifies the extent of the flooded 
areas. Figure 4-18 shows the scheme of detecting flooded areas using a coupled CNN-RG method. 
The procedure recommended here provides the following opportunities to the state of 
Tennessee: identify the flooded areas following a flood for emergency disaster response efforts, 
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determine the roads affected by the flood, and pinpoint the roads that are not flooded and may 
be used for disaster response efforts. 

 
Figure 4-18 Flowchart for Detecting Flooded Areas (Adapted from [65]). 

Post-floods, drone-based optical granulometry can be utilized for identifying the changes in 
granular materials affected by the flood, such as flood depositions. The optical granulometry 
method must be performed on optical images of the region of interest. Therefore, the first step 
in this process is to acquire aerial images of the affected area using an RTK drone system 
companied with GCP data points. An orthomosaic image of the affected area can then be created 
using photogrammetry processing on the acquired images. The orthomosaic image can be 
imported into an optical granulometry software such as BaseGrain [93] to identify the objects 
(grains) in the image. By obtaining the size of the grains identified in the image, the grain size 
distribution curves and parameters can be calculated. The generated grain size distribution data 
can then be compared with previously established grain size distribution data to detect the 
changes in the area’s grain composition [68]. Figure 4-19 displays the flowchart for detecting 
grain size distribution changes post-floods using UAV-based optical granulometry. Many bridge 
abutment stabilizations in Tennessee use aggregates or riprap slopes. The mentioned aggregates 
might be displaced during a flood. The practice recommended by this study helps in detecting 
any changes in the bridge abutment aggregates after a flood to ensure the safety of bridges. 
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Figure 4-19 Flowchart for Optical Granulometry Using Drones. 

4.3 Outcomes and Implementation Benefits 
The outcomes from this project may yield potential benefits to TDOT for using drones during 
disaster relief efforts. First, this research led to a critical review of the hardware systems of drones 
and sensing technologies for application in different disaster relief efforts, sharpening TDOT’s 
understanding about the capability and applicability of the emerging technologies. This outcome 
could expedite the usage of emerging technologies at TDOT and other state agencies to improve 
their technical capabilities in disaster relief. Drones have the potential to increase the 
effectiveness of disaster relief efforts such as infrastructure survey and assessment because their 
mobility gives drones the ability to inspect areas of a structure that are either inaccessible to 
inspectors or difficult / costly to reach. A key benefit of the use of drones for post-disaster 
assessments is that it can be used to reduce or eliminate many of the physical hazards faced by 
inspectors. These hazards include working at height, in isolated environments, in poor lighting 
conditions [1]. Even with proper training accidents do occur, so removing the interactions 
between hazards and inspectors is important. In addition to helping to preserve the health of 
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inspectors, using drones to reduce the occurrence of injuries during post-disaster assessments 
can benefit the overall organization through less workman’s compensation claims, less time away 
from work after injuries, and reduced liability [1]. In addition to reducing hazards for the 
inspectors during an assessment, the safety of inspectors can be improved by the drone 
providing information to assist in the planning of assessment activities. The use of drones to help 
facilitate post-disaster survey efforts are not necessarily limited to the actual inspection itself. 
Imaging from drones can be used to help in pre-inspection activities for disaster and structure 
assessments that will be later done with a detailed evaluation with drones or directly by 
traditional inspections. The data from drones in a pre-assessment can be used to identify areas 
where cleaning is required prior to assessment or areas where there is a particular concern of 
damage. Furthermore, this pre-inspection information can be used to plan a detailed path for 
the inspector or flight path for a UAV and identify hazards for the inspector (such as fall points, 
slips, sharp areas, vegetation, wildlife, etc.) or hazards for the drone (aerial obstructions, tight 
clearances, environmental concerns, etc.). 

While drones have many benefits, their use has important constraints. The use of drones is not 
appropriate for all structures. For example, out of a randomly selected batch of bridges managed 
by the Oregon Department of Transportation, it was estimated that the inspection of 56% of 
these bridges would not benefit from drones [4]. One of the main reasons for this decreased set 
of bridges that would likely benefit from the use of drones was the assumption that small and 
short bridges could more easily be inspected by traditional means [4]. In another case, 
researchers found that the drone-based crack inspection took significantly longer than the 
average inspection time taken in 30 different hands-on inspections of the bridge they were 
examining [10]. Drones lack some basic capabilities that a physically present human inspector 
has. For example, the drone typically cannot be used perform hands on activities such as clear 
debris around a point that is desired for inspection or implement sounding-type tests. The 
mobility of drones is also compromised by difficulty or inability to operate in confined or interior 
spaces and their inability to clear obstacles such as closed doors or hatches. In addition to the 
physical constraints of drones, the Federal Aviation Administration rules that govern them place 
significant restrictions on their usage [94]. These restrictions include requiring visual line-of-sight 
operation, altitude limitations, weight limitations, certification requirements, and restrictions on 
operating over bystanders and vehicles. 

Second, this research led to a generalizable framework for using drones and AI-enabled 
software/data processing tools, providing TDOT an implementable framework to process and 
analyze critical data before, during, and after disasters for disaster preparedness, response, and 
recovery. The framework was tested and validated using the data collected during the Tennessee 
tornado disasters, offering TDOT implementation insights for using the framework. The 
proposed framework entails two innovations: real-time structure damage detection and damage-
aware drone mission planning, which collectively enable the drone to prioritize post-disaster 
efforts and acquire situational awareness regarding the affected disaster areas. It was also found 
that deep learning-based techniques are effective in detecting and classifying the region or 
objects of interests from the drone-collected images or videos. The detection network adopted 
in this research was trained on the ISBDA dataset and achieved an overall precision, recall, 
mAP0.25, mAP0.5, and mAP0.25:0.5 of 0.406, 0.473, 0.399, 0.289, and 0.345, respectively, demonstrating 
its feasibility for practical applications in disaster relief efforts. For TDOT implementation, it 
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should be noted that the results also indicate a strong variation in performance across different 
levels of structure damage. For instance, the light structure damage achieved the highest 
performance followed by the severe damage. Therefore, for practical application and 
interpretation, further evaluation and testing are still needed. 

The feasibility of damage-aware UAV mission planning approach was also demonstrated in a 
experiment using the data collected after tornado disasters occurred in the state of Tennessee. 
The generated drone trajectory can maximize the total damage index given different distance 
constraints. The promising results show great potential for the proposed framework in improving 
the efficiency of disaster relief efforts using drones. For potential TDOT implementation, 
improvements in the following areas are needed. First, testing the proposed framework in real-
world scenarios is needed to optimize the system based on the need for disaster relief 
operations. In addition, it is also necessary to evaluate to what extent the system will impact the 
efficiency of disaster relief efforts. Second, the structure damage detection accuracy is relatively 
low, which stems from the scarcity of training data. In the future, more data needs to be collected 
at disaster sites and advanced algorithms need to be developed. For other applications in 
disaster relief efforts, corresponding datasets also need to be prepared to train the deep 
learning-based techniques for practical implementation. 

This research also produced uses cases and workflow for using drones in different types of 
disasters scenarios for potential implementation in Tennessee. The hardware systems for data 
acquisition, software systems for data processing, information management, and visualization 
were analyzed with respect to usage in different disaster scenarios. As such, TDOT could have a 
clear idea of what technologies and associated data analytics can be used in what scenarios and 
under what circumstances. The implementation of these advanced technologies could also help 
address several concerns that TDOT is facing with, including post-disaster surveys, landslide, and 
flooding. Therefore, this research could help TDOT to improve the efficiency and effectiveness of 
disaster preparedness, response, and recovery, and thus saving significant costs. 
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Chapter 5 Conclusion  
Tennessee faces many threats from natural disasters such as tornadoes, flooding, landslides, and 
earthquakes, which damage civil infrastructure and cause major service interruptions. TDOT 
plays a critical role in preparing for, mitigating, responding to, and recovering from disasters. The 
use of advanced and emerging technologies such as drones, sensing technologies, machine 
learning methods, and optimization techniques could significantly expedite disaster relief efforts. 
Therefore, this research reviewed the current practice and system configurations for using 
drones and other emerging technologies in disaster relief efforts, providing useful insights for 
TDOT to understand the uses of these technologies. In addition, a generalizable framework based 
on 3D reconstruction, deep learning, and optimization was proposed for processing drone-
acquired data and drone mission planning, which can be applied in various disaster scenarios. 
The framework can be adapted based on the needs from TDOT for potential implementation. 
This research also investigated the use cases as well as general workflows for using drone 
systems and software tools in different types of disaster scenarios, including post-disaster 
infrastructure systems surveys, landslide investigation, and flooding assessment. Pilot tests were 
also conducted to validate the proposed methods, use cases, and workflows, confirming the 
feasibility and potential of using drones and associated technologies in disaster relief efforts, and 
therefore providing TDOT useful information for potential implementation. 

The key recommendations are summarized herein.  

 First, with appropriate system configurations, drones can be used in various scenarios for 
disaster relief efforts to expedite the task implementation, improve data collection, and 
reduce survey and assessment time, as well as improve safety during disaster relief efforts. 
It should also be noted that different types of drones should be operated for different types 
of disaster scenarios, considering the constraints and limits of the drone systems, the 
requirement of disaster relief tasks, and the nature and environmental conditions of the 
disasters. 

 Second, commercial software and tools are available to control drones and process drone-
collected data for common applications such as 3D reconstruction. 3D reconstruction of 
disaster scene or structures of interest could provide useful models for subsequent analysis 
such as damage assessment and slope failure analysis. In addition, deep learning techniques 
can be applied to process drone-collected images for extracting disaster-relevant information 
with due accuracy. To achieve better performance, large amounts of training data are needed 
for more robust performance in disaster relief efforts. 

 Third, the uses of drones in disaster relief efforts such as post-disaster infrastructure survey 
and assessment, landslide investigation, and flooding assessment are recommended. The 
workflows differ in different types of disasters and for different stages such as disaster 
preparedness, mitigation, response, and recovery, and practitioners need to carefully 
evaluate the workflow and use cases for practical applications
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