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Executive Summary 
Travel signal retiming is one of the most basic strategies to help mitigate congestion. However, 
the performance of traffic signals is costly to evaluate, and agencies often rely on citizens’ 
complaints and periodic schedules (e.g., every three years) to perform signal retiming. As a result, 
many traffic signals are not retimed in a timely manner when there is a change in traffic pattern. 
The objective of this project was to develop a low-cost database that ranks the traffic signals in 
Tennessee on a scale of 0 to 10. The ranking database provides performance evaluation of traffic 
signals and helps agencies prioritize traffic signal retiming. 

In this work, segmented probe vehicle data from the Regional Integrated Transportation 
Information System (RITIS) website was used. First, intersections were extracted using the Travel 
Message Channel (TMC) segments. Three metrics were then selected based on the available data 
from the RITIS website, and a ranking formula that incorporates these metrics as well as factors 
such as different time of the day and different days of the week was designed. In September 
2021, traffic data was used to calculate the ranking of the intersections, and an online database 
was developed to display, browse, and query the traffic signal ranking information. K-means, an 
unsupervised machine learning approach, was utilized to divide the signals into 6 clusters, using 
which the weighting factors of the ranking formula were finetuned. The ranking formula results 
were compared with the Level-of-Service (LOS) letter grade ranking provided by local 
transportation agencies, and it showed that the former results were mostly harsher. This work is 
the first step towards an automated evaluation system that can monitor the performance of 
traffic signals in real-time.    

Key Findings 
The key findings based on this project are concluded as follows: 

• Among the 1655 Tennessee traffic signals in the database, 18.73% have excellent 
performance, 65.49% have good performance, and 15.78% are performing poorly.   

• Discussion with traffic engineers in City of Murfreesboro and City of Franklin indicated 
that urban traffic signals tend to be ranked lower than rural ones. 

• Local agencies do not have a systematic way to evaluate traffic signal performance. Based 
on interactions with City of Murfreesboro and City of Franklin, local agencies still rely on 
LOS letter grades and sometimes outdated traffic data to evaluate traffic signal 
performance. The LOS letter grades are solely determined by the average control delay, 
which are often hard to obtain. This observation indicates that the work done in this 
project could be very helpful to the local agencies.  

• Machine Learning could be very useful in evaluating traffic signal performance. In this 
project, unsupervised learning was used to automatically group intersections into 
clusters. The machine learning results not only provide another way to evaluate the 
performance, but also help us fine tune the weighting factors in the ranking formula. 

Key Recommendations 
The research team makes the following recommendations to the Tennessee Department of 
Transportation (TDOT) based on the research findings:  
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• More outreach should be conducted with local transportation agencies to make them 
aware of the ranking database. Local agencies can provide feedback regarding the traffic 
signal ranking data while also benefiting from the ranking results by retiming their traffic 
signals in a more organized way. 

• To expand the database and create opportunities for additional intersections to be 
ranked, TDOT should work with RITIS/INRIX to include more side roads in TMC/eXtreme 
Definition segments.  

• Due to the high recurring cost of using Amazon webservices to host the online database,  
the research team recommends either TDOT or the Middle Tennessee State University 
host the website.  

• Safety should be included in the ranking calculation. Because the access to the traffic 
safety related data was not given, safety was not involved in the ranking formula. 
However, it is recommended that safety related factors are added to the ranking formula 
in the future. 

• Need to monitor traffic signal performance in real-time. The current signal ranking results 
were calculated using historical traffic data in September 2021. It would be much more 
useful if the real-time score can be calculated and displayed online. This would require 
pulling data from the RITIS website periodically and frequently or implementing an 
Automated Traffic Signal Performance Measures (ATSPM) system, but the benefits could 
be huge because the agents would be able to tell the performance of a specific signal in 
real-time. 
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Chapter 1  Introduction  
1.1 Problem Description 
The increase in the number of vehicles on roads has led to a rise in traffic congestion, especially 
in highly populated areas. The national cost of congestion in the United States has increased by 
almost six-fold, from $24 billion in 1982 to $121 billion in 2011 [1]. At the end of that period, the 
commuters felt the congestion’s effect in the form of an additional 5.5 billion travel hours and 
2.9 billion more gallons of fuel. The upward trajectory of congestion has since continued, with 
2019’s pre-COVID-19 national congestion cost rising to $190 billion [2]. Whereas the impact of 
congestion on the commuter and the government can be observed almost immediately, its 
environmental impact is more drawn out and much more challenging to remedy. It is estimated 
that 29% of all emissions in 2019 were attributed to the transportation sector, with more than 
half of that contributed by light-duty vehicles including passenger cars and light-duty trucks [3]. 
A sum of 36 million tons of greenhouse gases produced in 2019 were created due to congestion 
alone [2]. Therefore, it is important to mitigate congestion on roadways to minimize the economic 
and environmental impact. As illustrated In Figure 1.1 below, there are multiple ways to reduce 
congestion. For example, it can be alleviated through limiting the number of vehicles through 
policy changes or road optimization efforts to ensure maximum utility of available facilities. 

 
Figure 1.1 Congestion-Relief Methods. 

Congestion-relief efforts made under the consideration of the former often involve investment 
in expansion of alternate forms of transport, including subways, light rails and trams, carpooling 
and expanded bicycling facilities. Since these undertakings aim to reduce the number of vehicles 
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on the road, they are mostly considered when reducing emissions and pollution is the main goal 
or in areas where support for such policies is high.  

The alternative approach to fighting congestion focuses on road capacity, in which roads are 
either expanded or optimized. Road expansion projects are often expensive endeavors for 
transportation agencies and cause congestion and bottlenecking along and at nearby roads and 
intersections due to limited lane availability and traffic detouring. Furthermore, it has been 
documented that this approach does not significantly improve congestion, hence not completely 
justifying the investment [4]. Duranton et al. conducted a study based on the “fundamental law 
of highway congestion” [5], in which the law was expanded beyond highways onto major roads 
[6]. Their findings suggested that increasing road capacity is not an appropriate approach to 
tackle congestion. Additional studies [7, 8] reached similar conclusions, with the latter suggesting 
road pricing as an alternative solution to congestion. However, congestion pricing projects like 
the introduction of toll lanes do not receive massive or sustained support from the public [9, 10, 
11]. These methods often require significant investment from the government, policy changes 
and public support, a significant change in the commuting patterns of the public, additional travel 
cost, or combinations of these effects.  

Road optimization projects are less intrusive to drivers due to the utilization of already existing 
infrastructure and at no significant cost to the driver, hence garnering greater support [12]. Some 
simple solutions include the use of alternate lanes to increase the flow of traffic in the congested 
direction while operations including optimization of traffic signals performance are more 
complex. There are more than 272,000 traffic signals in the U.S. alone, and traffic signal retiming 
is one of the most cost-effective ways to improve traffic flow and mitigate congestion [13]. Each 
state or local transportation agency in the United States has a considerable number of traffic 
signals under its purview, and many of these agencies do not have a framework through which 
signal performance is analyzed to directly impact retiming efforts [14, 15]. Instead, these agencies 
rely on citizens’ complaints to respond to congestion at specific intersections, and random 
periodic schedules of up to five years to retime traffic signals. These methods are slow for the 
former, and highly ineffective and irregular for the latter. In both cases, poorly performing signals 
are not correctly identified, and the agencies do not have said signal performance evaluation 
framework to observe the effects of the retiming efforts. Such a framework requires large 
quantities of data to capture the actual conditions on the roads. Signal performance data is time-
based and includes mostly speed and travel time-related measures, as well as occupancy and 
utility measures. Performance evaluations are used to prioritize which traffic signals need 
retiming to complete a feedback loop of continuous improvement of a traffic control system, as 
illustrated in Figure 1.2.  
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Figure 1.2 Process Flow of Traffic Signal Performance Evaluation. 

1.2 Research Objective 
It is imperative that transportation agencies employ a systematic approach to evaluate traffic 
signal performance to provide valuable insights on the flow of traffic and aid in retiming efforts. 
However, there is no universal approach to do this, and it would also require significant amounts 
of resources and associated costs. In this work, the objective was to develop a low-cost and yet 
effective ranking database that gives each major Tennessee traffic signal a score between 0 and 
10. The ranking results are easy to understand so that agencies can evaluate the performance of 
traffic signals and prioritize retiming efforts. 

1.3 Report Organization 
The remainder of this project report is structured as follows. Chapter 2 explores some of these 
endeavors in which probe vehicle data was utilized to evaluate and rank traffic signals. In Chapter 
3, the methodologies that build on the existing body of research to provide performance rankings 
for signalized intersections in Tennessee are presented; this chapter covers how signalized 
intersections were identified using the geographical information provided by probe vehicle data 
and how a rank for each intersection on a scale from 0-10 was determined. In Chapter 4, the 
results and their implications are discussed. Some preliminary work for Phase II of the project is 
presented in Chapter 5. Conclusions and an outlook for future works are included in Chapter 6.  
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Chapter 2 Literature Review 
Remias et al. evaluated segment-based probe vehicle data performed four case studies to test 
the effectiveness of different methods for traffic signal performance evaluation [16]. Four data 
collection methods, including agency-driven probe vehicles, re-identification with pavement 
sensors that can detect a vehicle’s magnetic fingerprint, re-identification with Metropolitan 
Affairs Coalition address matching using Bluetooth Monitoring Station (BMS) scanners, and 
crowd-sourced data (commercial probe vehicle data from INRIX). The results showed that crowd-
sourced data from INRIX had the best scalability but only fair sample sizes and characterized 
distribution of travel times. It also highlighted the limitation of segmented probe data that is 
crowd-sourced to correspond to individual signalized intersections. This, coupled with the low 
penetration of the Traffic Message Channel (TMC) standard, which is widely used in aggregating 
probe vehicle data by private entities including INRIX, is a hinderance to greater use of probe 
vehicle data. Despite these limitations, probe vehicle data has been increasingly utilized by 
agencies and researchers alike to develop performance evaluation frameworks.  

2.1 Signal Performance Metrics 
Meijer et al. used consumer vehicle Global Positioning System (GPS) data provided by the Floating 
Car Database from TomTom to measure delay and turning movements at intersections in the 
Dutch city of Delft [17]. The authors utilized a multi-source multi-destination Dijkstra algorithm 
to analyze each individual measurement and link it to the most probable location on the road 
based on the chosen route of the vehicle. For measurement of turning movements, the results 
of the vehicles’ GPS data were compared with a ground truth reference obtained by loop 
detectors and shown to be accurate with less than 3.8% error. When measuring delay, which is 
defined as the difference between uninterrupted and interrupted travel times through the 
intersection, the results from the GPS data were compared with the those from the combination 
of loop detectors and a time-dependent stochastic delay model. In this case, there was no ground 
truth reference, and the two methods provided distributions with similar trend but deviations as 
large as 20𝑠𝑠 during rush hour and nighttime periods. The authors proposed that the insufficient 
amount of GPS sample data contributed to the discrepancy. 

Wünsch et al. [18] used anonymous GPS probe data from navigation devices to perform a large-
scale generic analysis for the Bavarian Road Administration in Germany. The data provided was 
used to determine delay times and path specific travel times for road segments that contained 
2,300 traffic signals. Once the data was mapped to the corresponding intersections and reference 
travel times were determined using free-flow speed, the key performance indexes were 
calculated and used to rank the intersections. The metrics analyzed were the total delay, the 
average delay, and the travel time index. The total delay was calculated using the total sum of 
the delay for vehicles at an intersection compared to free-flow speed [17], with the average delay 
simply being the value normalized for the number of vehicles. Lastly, the travel time index, as 
mentioned earlier, is the ratio of the observed travel times over the free-flow speed travel times. 

Khattak et al. used travel time runs and INRIX probe vehicle data to obtain performance 
measures for Scalable Urban Traffic Control intersections in Pittsburgh, Pennsylvania [19]. First, 
GPS floating car data was collected for different time-of-day windows and travel time and speed 
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measures were developed and evaluated for improvements. Considering the free flow travel time 
as the posted speed along a TMC segment, the planning time index was developed from the INRIX 
probe vehicle data: 

 
Volatility and Bayesian regression models were also used to analyze performance before and 
after adaptive traffic control. The adaptive control was determined to have a net positive impact 
on speed, travel time, travel time reliability and planning time index. This study benefits from the 
use of multiple sources of data and different performance measures. Although it was determined 
that the GPS data and the probe vehicle data from INRIX showed variation, multiple other useful 
measures could be incorporated from probe vehicle data including congestion represented as 
the ratio of average speed to the free flow speed. 

Cheng [20] worked with the Department of Transportation (DOT) of the City of Austin, Texas to 
develop and implement performance metrics to evaluate traffic signal effectiveness. Along with 
a modified corridor travel time, which the DOT was already using in evaluation, a few other 
metrics were developed: corridor travel time change, corridor throughput, side street split 
failures, pedestrian delay, transit speed change/transit ridership change, and reliability index 
change. Most data used to obtain these metrics originated from Metric Blvd. because it was the 
only corridor that had recently been retimed. The analysis was done on data from both before 
and after the retiming occurred. The travel time data did not show any significant difference 
between the two study periods, but this proved to be a good opportunity to compare the data 
sources. It was found that these data sources tended to overestimate the travel time during low 
levels of traffic and conversely underestimate it during peak times. Exiting throughput was 
monitored on W Parmer Ln. due to the presence of GRIDSMART cameras on the corridor. 
However, since there was no retiming done to this intersection, there were no comparisons 
made. To investigate side street split failures, Kimley-Horn’s online dashboard and aggregate 
report function were used for all intersecting corridors to Metric Blvd. The before and after 
graphs showed a decrease in total split failures on Metric Blvd. but the side corridors did not 
show a significant increase. There was a lack of data for determining pedestrian delay and transit 
speed change, so it was undetermined if retiming had any impact on the measures. INRIX data 
was used to determine the reliability index and was found to show an overall increase during 
peak hours. Using the data available through INRIX, a list of recommended corridors to be 
retimed the next year were presented. 

2.2 Signal Performance Rankings 
The Pennsylvania DOT sponsored a study [21] to create a web dashboard interface that uses 
commercial probe vehicle data from INRIX to rank the performance of 138 corridors in 
Pennsylvania. The corridors were evaluated in terms of travel time, reliability, delay, and 
congestion based on segmented probe vehicle data. The data was collected from a web 
Application Programming Interface via windows service program and automatically stored in a 
Structured Query Language (SQL) database. Over the course of one year, roughly 30 billion data 
records were recorded. Using aggregated data across 15-minute time intervals, travel time was 
calculated using a normalized median speed for a given road segment. The interquartile range 
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was used as a measurement of the reliability. Delay and congestion were measured using a plot 
showing a color-coded break down of a corridor based on the operating speeds for each section. 

Day et al. [22] presents a methodology for analyzing and ranking arterial travel times. The analysis 
was performed on a series of 28 arterials with a total of 341 signalized intersections in Indiana, 
USA. The data consisted of individual minute by minute speed records which were then 
converted into travel times. To mitigate the effects from occasionally missing data, the speed 
records were pooled into 15-min bins, and the average of the bins was used as the measured 
travel time in each segment for that period. Additionally, the authors divided a typical day into 
three intervals: morning peak, midday, and afternoon peak. 𝑇𝑇 was used to denote the length of 
such an interval. Since the arterials varied in length and speed limits, two normalization methods 
were used on the data: (i) calculating travel rate 𝑟𝑟𝑇𝑇 and (ii) calculating the ideal-speed normalized 
travel time 𝑥𝑥𝑇𝑇′  by dividing the average measured travel time by the ideal travel time. The travel 
rate 𝑟𝑟𝑇𝑇  in the former method is the ratio of the average travel time over the distance of the 
corridor, which is basically the reciprocal of speed. In the latter method, the ideal travel time is 
calculated as the time it takes to traverse the corridor at the speed limit. The authors discovered 
that 𝑟𝑟𝑇𝑇  and 𝑥𝑥𝑇𝑇′  are proportional to each other. Because 𝑟𝑟𝑇𝑇  could be arterial dependent, they 
considered 𝑥𝑥𝑇𝑇′  as a better metric to rank different corridors. In addition to the ideal-speed 
normalized travel time, which is essentially the central tendency, the study also evaluated the 
normalized reliability of travel time 𝑠𝑠𝑇𝑇′ , which is the ratio between the standard deviation of the 
actual travel time and the speed limit travel time. Finally, the authors came up with a ranking 
index for each corridor: 

 
where 𝑤𝑤 is a weighting factor. 

It was determined that the arterials with more traffic signals had higher average travel times and 
less reliability. This study considered a few arterials for evaluation, using only data for Wednesday 
which may not be representative of the typical traffic flow on the arterials for other days. 

In a more recent work [23], Dunn et al. used segmented probe vehicle speed data to rank the 
performance of 1,026 traffic signals along 79 corridors maintained by the City of Austin, Texas 
for retiming purposes. The data used by this study was purchased by the City of Austin from a 
third-party vendor, which had a data set that covered 87% of the area in question. The data 
provided listed the average vehicle speed over segments of the road, with one minute speed 
averages. The data was downloaded from the provider and stored in a PostgreSQL database for 
use. The speed data was aggregated into 15-minute bins in TOD periods: morning peak (7AM-
9AM), midday (11AM-1PM), and evening peak (4PM-6PM). There were three metrics used in the 
ranking process: the percentage of the corridor that experienced any slowdown, the percentage 
of the corridor that experienced a slowdown greater than 3mph, and the maximum slow-down 
among all the segments for any given corridor. The final ranking is based on the average of all 
rankings across three TODs. Finally, the authors validated their approach by comparing the 
corridor travel time improvement potential between two groups of arterials: the ones 
recommended by the ranking method and the ones selected by the City of Austin. The results 
indicated that the former group has 96% more travel time improvement potential than the latter 
group. 
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Segment-based probe vehicle data has also been widely used to evaluate the performance of 
segments on freeways. Gong and Fan [24] used a systematic approach to rank freeway segments 
using both intensity and reliability dimensions of traffic congestion. They discovered that two 
freeway segments may have very similar reliability values but significantly different intensity 
levels, and vice versa. Though the study focused on freeways, further research into its application 
to signalized intersections can provide valuable insight for traffic agencies. 

Segmented probe vehicle data is a cost-friendly and readily available source of data for evaluating 
the performance of traffic signals, but its coarse granularity often imposes severe limitations. 
Specifically, some TMC segments are much longer than others and these segments may have 
multiple signalized intersections along their lengths. This limits the identification of intersections 
because there are effectively no segments at the encompassed intersections, and no 
representative speed and travel time data. This has been alleviated by the emergence of new 
types of segments such as the INRIX eXtreme Definition segments (XDs), which over more miles 
of road, are more flexible, and offer higher granularity than the TMC segments.  

A recent work that takes advantage of the XDs data to evaluate the effectiveness of adaptive 
traffic signal control in Des Moines, Iowa and Omaha, Nebraska, USA is conducted by Sharma et 
al. [25]. Specifically, they used raw vehicle speed data to generate cumulative distribution plots 
of speed, travel time, and then travel rate. Using the cumulative distribution plot of travel rate 
and a 90% confidence interval, the authors were able to classify all the days into two categories: 
typical and anomalous ones. The number of anomalous days per year was used as a metric to 
describe the travel time reliability of a segment. For normal days, the authors used five metrics 
to rank each segment. The first two were directly derived from the cumulative distribution plots: 
(i) Median travel rate, defined as the 50th percentile of the median of each day’s travel rate and 
(ii) Within-day variability, defined as the median of the 95th percentile and the 5th percentile of 
a segment’s travel rate. The other three were minimum travel rate dispersion, overall travel rate 
variability polynomial, and overall travel rate variability linear. These three were parameter 
coefficients obtained through curve fitting, which was done between the 90% confidence interval 
and the percentiles from 0% to 100%. In the case studies, the authors further classified the 
segments into 8 categories based on intersection density, which is defined as the number of 
intersections per segment, and the Annual Average Daily Traffic per lane volume of the segment. 
Color-coded spider and bar plots were used to show the performance of the segments based on 
the five metrics for each category. Some signals were observed to be under performing and one 
was selected to test adaptive signal control, resulting in small positive changes. 

Brenna and Venigalla also experimented on the use of XDs data by fusing high-resolution data 
from traffic signal systems and probe vehicle data [26]. Performance measures studied include 
probe vehicle speed and travel time to assess signal performance and data availability, and it was 
observed that minor changes in signal timing plans improve operational efficiencies of corridors. 
XDs are proprietary and provide better signal identification/isolation than TMC segment. The 
additional expense in choosing to use it over TMC segments is not feasible for many resource-
strapped agencies, hence limiting its widespread application.  
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2.3 Summary 
Probe vehicle data provides a widely available and fiscally viable option for agencies because no 
heavy investment is needed for purchase and installation of a wide network of sensors and traffic 
controllers. This makes probe vehicle data a powerful tool for in-depth analysis of traffic 
performance and the development of novel evaluation methods. Probe vehicle data, either from 
commercial companies or crowdsourcing, has become increasingly popular in the past decade, 
due to technological advances in smartphones, GPS, and embedded systems. However, the 
granularity problem of the segments makes it hard to evaluate performance at each individual 
intersection; as a result, most works utilizing segmented probe vehicle data focus on the 
performance of arterials instead. It is expected that the penetration rate will continue to rise, 
making probe vehicle data more useful than ever.  

Most of the studies considered few performance measures to evaluate individual intersections 
and traffic control systems, and while they documented mostly positive results, the measures 
used may be insufficient to determine a true comprehensive measure of the performance at an 
intersection. Most of the works reviewed evaluate the performance of either individual 
intersections or individual corridors with multiple major intersections. The work detailed in this 
report seeks to provide a performance evaluation for an expansive list of intersections in the 
state of Tennessee. The cost-friendly and data-driven evaluation methodology proposed in this 
work could be used by agencies in other states as well. 
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Chapter 3  Methodology  
In this chapter, the two different methods: the ranking formula approach and the unsupervised 
machine learning approach used in the research to rank traffic signals are presented. First, it is 
necessary to show how the data used by both methods was extracted and how the intersections 
were identified. 

3.1 Data Source and Intersection Extraction 
The data used in this project was obtained from RITIS (ritis.org), utilizing INRIX probe vehicle data 
accessed through the Probe Data Analytics (PDA) Suite on its website. The segment-level data 
encompassed most roads in Tennessee except interstate highways. The data was received as two 
comma-separated values (csv) files, TMC Identification and Readings: the former has the 
geographically identifying information for TMC segments from road names to GPS coordinates 
while the latter contains the probe vehicle readings obtained along the TMC segments. Figure 3.1 
below summarizes the process used in the development of the intersection rankings.  

 
Figure 3.1 A process chart showing an overview of methodology steps to obtain intersection rankings. 

The TMC segments are designed such that each direction of traffic along a road has its own 
segment. Therefore, an ideal T-junction intersection is formed where six segments meet and a 
crossroad intersection is formed where eight segments meet. Segments have starting GPS 
coordinates at an intersection when the direction of travel is outbound and ending coordinates 
when the direction of travel is inbound. Using nested loops in Python 3.1, a script was written to 
focus on the GPS coordinates provided for each segment. Each row in the TMC Identification file 
was read in the primary loop, and the end latitude and end longitude column values recorded. A 
nested loop looked at all other rows and compared the end latitude and end longitude values to 
find an exact match. The segment codes for matches were recorded in a list that was written to 
a text file after each iteration. The end coordinates narrowed down the focus onto only the 
inbound segments for an intersection to eliminate repetition of segment impact on rankings of 
multiple intersections.  

The PDA Suite also provides the Trend Map tool which proved to be of utmost importance in 
verifying the intersections extracted using the TMC segments. It allows users to enter specific 
TMC codes and maps them out. Users can also draw geometrical figures on the map and it 
returns all segments within its borders. To test the accuracy of the intersections extracted, 
random lists in the text file were copied and inserted into the Trend Map tool. Figure 3.2 shows 
samples of a T-junction and a crossroad intersection in the Trend Map, obtained from the initial 
group. 
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Figure 3.2 (a) A T-junction intersection at Central Ave. and TN-78, formed with three inbound TMC 
segments. 

 
Figure 3.2 (b) A crossroad intersection at Hillsboro Pk. and Woodmont Blvd, formed with four inbound 
TMC segments. 

Initially, only the ideal intersections as pictured (3 or 4 segments only) above were considered 
but their count did not reach 1000. It was imperative to further process the intersection the TMC 
Id file to extract more intersections. In a new Python script, the list of intersections was expanded 
to include all ‘intersections’ where more than one segment had the same end coordinates and 
were written to one text file. Each line in the file contained a group of segments with their 
respective road and intersection names (see Figure 3.4) pooled together in a list at the end of the 
line. The names for each group of segments were extracted and compared to the names for all 
other groups of segments to find a match. A diameter of 50m was used as a secondary filter to 
only match the groups in proximity. The diameter was applied to the end coordinates of the 
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segment pairs. These hybrid intersections were appended to the original list. Figure 3.3 shows 
two intersections, one formed as a combination of multiple pairs of segments ending at different 
coordinates yet being part of the same intersection, and the other formed using only two 
inbound segments. 

 
Figure 3.3 (a) A crossroad intersection at TN-104 and US-51 BYP. Four different pairs of TMC segments did 
not have a singular end GPS coordinate but had a match for road and intersection names. 

 
Figure 3.3 (b) The intersection of Rutherford Blvd and US-231. This intersection is formed using only two 
inbound segments along US-231, while Rutherford Blvd did not have any segments. 
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The road names include all the alternate names for the segments that have more than one value 
in the intersection column. An intersection constituting the segment 121N50401 in Figure 3.4, 
would have the names W 5TH AVE NW, US-441 and BROADWAY NW’ all recorded including road 
names from other segments at the intersection if they were not a match for the previous three.  

 
Figure 3.4 A close-up of TMC segments in the TMC Identification file showing the alphanumeric TMC Id 
code, direction of travel along the segment, and road and intersection names. 

Some intersections have stop signs, not traffic signals. Manual checking was done to remove 
those and ensure that there were no errors. The final number of signalized intersections is 1655. 

3.2 Using a Ranking Formula 
The ranking formula used three metrics to determine a rank, from 0-10, for all individual TMC 
segments. The rank for each intersection was then determined by averaging the ranks of the 
constituent TMC segments. The metrics used included congestion, Planning Time Index (PTI) and 
bottleneck ranking. The congestion was calculated using the average speed along the segment 
and hence represented the average traffic pattern along the segment, while the planning time 
index considered the near worst-case travel time at the 95th percentile. The bottleneck ranking 
shows the 1000 worst cumulative congestion locations over an extended period. The rank for 
each segment, R, is shown as a numerical value from 0-10, with 0 being the worst and 10 being 
the best. 

 
where: 

• 𝑅𝑅𝑝𝑝, 𝑅𝑅𝑐𝑐, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑏𝑏  are the contributing factors for planning time index, congestion, and 
bottleneck ranking, respectively. These performance metrics will be explained later in 
details. 

• 𝑤𝑤𝑝𝑝 = 2.6,𝑤𝑤𝑐𝑐 = 5.9, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑏𝑏 = 1.5 are weights assigned for planning time index, congestion, 
and bottleneck ranking, respectively. These weighting factors are crucial because their 
values affect the ranking results. The weight selection process will be explained in detail 
in Chapter 4. 

A Readings file that contains probe vehicle data for the 15,007 segments in Tennessee for every 
day in the entire month of September 2021 was created. Speed and travel time data for the 
segments averaged over five minutes for three three-hour (time-of-day) windows during the day 
to represent the time of the day in which traffic is dense: 6AM-9AM for morning, 11AM-2PM for 
midday and 4PM-7PM for evening. The first two hours in each time-of-day window were 
considered for weekdays and the last two hours are used for weekends. In a Python script, the 
Readings file was processed to produce the planning time index and congestion metrics. 

3.2.1 Planning Time Index 

The Planning Time Index (PTI) [27] is defined as the total travel time that should be planned when 
an adequate buffer time is included. It compares near worst-case travel time to a travel time in 
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light or free-flow traffic. It is calculated as the ratio of the 95th percentile value of the travel time 
and the free-flow travel time. 

In the Python script, a loop was initialized to look at each TMC segment and find and write to a 
list, the indices of all the times that the segment occurs in the Readings file. This list was then 
used to initialize a nested loop that scanned the timestamp column to determine the date and 
time of day of each occurrence using the datetime Python library. For all the occurrences in the 
morning, the travel time was appended to one list for weekdays and a second list for weekends. 
The free-flow travel time was determined by dividing the distance of the segment, read from the 
TMC Identification file, by the reference (free flow) speed of the segment and the time converted 
to seconds. The morning planning time index for that segment during weekdays and weekends 
was calculated by dividing the 95th percentile value of each list by the reference speed travel time. 
The morning planning time index, P1, given by 

 
where: 

• 𝑃𝑃1,𝑤𝑤𝑤𝑤 is the planning time index for the weekday morning and 𝑃𝑃1,𝑤𝑤𝑤𝑤 is the planning time 
index for the weekend morning. 

• 𝜀𝜀1 and 𝜀𝜀2 are the weekday and weekend weighting factors, respectively.  

Although the study covers all days of the week, much greater weights are assigned to weekdays 
than weekends due to the difference in number of days in weekdays and weekends, and the 
sheer volume of traffic experienced by each group. After consultation with the traffic department 
of City of Murfreesboro, it was determined that 𝜀𝜀1 = 0.9 and  𝜀𝜀2 = 0.1. 

Planning time indices for the midday period, P2, and the evening period, P3, were calculated 
similarly. The aggregate planning time index, 𝑃𝑃𝑚𝑚, for each segment was then computed as 

 
where 𝛼𝛼1, 𝛼𝛼2 and 𝛼𝛼3 are the weighting factors for the three two-hour windows in the day. Similar 
to how 𝜀𝜀1 and 𝜀𝜀2 are chosen, greater weights are assigned to the morning and evening time-of-
day windows than midday because the traffic volume is higher during rush hours: 𝛼𝛼1 = 0.4, 𝛼𝛼2 =
0.2 and 𝛼𝛼3 = 0.4.  

A histogram of the values for Pm for all the TMC segments is plotted, as shown in Figure 3.5. 
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Figure 3.5 A graph showing the histogram of 𝐏𝐏𝒎𝒎, the approximated Lognormal probability distribution 
curve, and the cumulative distribution curve. 

From the histogram, the distribution of the PTI is approximated to a Lognormal distribution 
function. The value of 𝑅𝑅𝑝𝑝  for a TMC segment is calculated using the cumulative distribution 
function 𝐹𝐹𝑝𝑝(𝑥𝑥) for a lognormal distribution. 

 
where 𝜎𝜎𝑝𝑝 is the standard deviation of the distribution of the log of all values of 𝑃𝑃𝑚𝑚. 

3.2.2 Congestion 

Congestion [27] is a ratio of the measured speed to the free-flow speed, and it is closely related 
to travel time index, the ratio of average travel time to free-flow travel time. Free flow speed is 
defined as the calculated "free flow" mean speed for the roadway segment in miles per hour. 
This attribute, formerly calculated as the 85th percentile prior to March 2020, has since then been 
calculated as the 66th-percentile point of the observed speeds on that segment for all time 
periods. This establishes a reliable proxy for the speed of traffic at free flow for that segment. 

The congestion was calculated in the same Python script loops as the planning time index, with 
a slight variation. The average speed values for each day were recorded in three separate lists 
for the morning, midday, and evening time-of-day windows. Averages were determined for each 
list and divided by the free flow speed to give congestion values C1, C2 and C3, for the time 
windows, respectively. The aggregate daily congestion value, Cd, for one segment was calculated 
as 

 
where 𝐶𝐶1, 𝐶𝐶2, 𝑎𝑎𝑎𝑎𝑎𝑎 𝐶𝐶3 are average congestion values for the three two-hour time windows. 
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The 𝐶𝐶𝑑𝑑 values for each day were then stored in two lists, one for weekdays and the other for 
weekends. The averages for each list, 𝐶𝐶𝑤𝑤𝑤𝑤 and 𝐶𝐶𝑤𝑤𝑤𝑤 respectively were calculated and the overall 
congestion for the TMC segment, 𝐶𝐶𝑚𝑚, is shown below, and a histogram of 𝐶𝐶𝑚𝑚 values is plotted as 
in Figure 3.6. 

 

 
Figure 3.6 A graph showing the histogram of Cm, the approximated Gumbel probability distribution 
curve, and the cumulative distribution curve.  

A histogram for all values of 𝐶𝐶𝑚𝑚  for all segments was similarly plotted, and the distribution 
approximated to a Gumbel distribution. A probability distribution curve and a cumulative 
distribution curve were superimposed on the histogram and the congestion contribution, 𝑅𝑅𝑐𝑐, is 
calculated using the cumulative distribution function 𝐹𝐹𝑐𝑐(𝑥𝑥): 

𝑅𝑅𝑐𝑐(𝐶𝐶𝑚𝑚) = 1 − 𝑒𝑒−𝑒𝑒−(𝐶𝐶𝑚𝑚−1)/0.1501 

3.2.3 Bottleneck Ranking 

The bottleneck ranking is a probe data analytics tool that ranks congestion along TMC segments 
over an extended period. The ranking was obtained as a file separate from the Readings file and 
it contained only the worst 1000 segments in Tennessee. The severity of bottlenecking increased 
as the numerical positions decreased to zero. The primary loop initialized in the planning time 
index section above also opened, read, and wrote the bottleneck ranking file columns into lists, 
and the column headers removed. Each loop iteration scanned the bottlenecking list containing 
the segment codes to find a match. When the segment was found, its index was incremented by 
1 to indicate its position, 𝑛𝑛𝑏𝑏 . Otherwise, 𝑛𝑛𝑏𝑏  is zeroed. The bottleneck contribution of a TMC 
segment, 𝑅𝑅𝑏𝑏, is given by 

 

All TMC segments with a zero value for 𝑛𝑛𝑏𝑏 and the segment ranked 1000 in the bottleneck ranking 
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file receive 𝑅𝑅𝑏𝑏 value of 1. 

3.3 Using Unsupervised Machine Learning 
In this phase of the project, unsupervised machine learning was used to evaluate the 
performance of traffic signals. Unsupervised machine learning means that three features: 
congestion, planning time index, and bottleneck ranking were provided to the system, but 
calculated ranking information was purposefully omitted, forcing the system to determine 
patterns or relationships between features.  

The k-means clustering algorithm, a simple but effective unsupervised machine learning 
approach, was used to analyze the data set that encompasses 1,655 intersections in Tennessee 
and group traffic signals automatically based on the three features. The number of groups is 
dependent on some provided k-value. For the purposes of this research, to mimic the Level-of-
Service (LOS) letter grades A-F [28], six clusters were used. The k-means clustering algorithm 
made available by the Scikit-Learn library, allowed us to test individual points to determine the 
six best centroids. These are the points within which the most points are located with minimal 
distance. Clusters are generated based on an individual point’s proximity to one of the centroids. 
K-means is considered a linear clustering algorithm because clusters of points are divided by 
linear hyperplanes through this methodology. The performance of the k-means clustering 
algorithm can be visualized by examining the groupings generated on a three-dimensional plot. 
Note that the constrained variation of the k-means algorithm was used because of the strong 
imbalances in cluster size. Essentially, it allows user to set minimum and maximum cluster sizes.  

The k-means clustering result serves two purposes. First, it provides an alternative way to 
evaluate traffic signals: it does not show a ranking between 0 and 10 for each signal, but it tells 
us which intersections are similar in terms of performance. Second, as discussed in Chapter 4, 
the k-means clustering results were also used to finetune the weighting factors used in the 
ranking formula above.  

3.4 Development of Database and Webserver 
An online database that can be easily accessed from the internet via web browsers was built.  In 
what follows, the details of database development and webserver construction will be discussed. 

3.4.1 Database 

Amazon Web Services Elastic Cloud 2 (EC2) instances provide invaluable testing and development 
environments for remote computing with variable processing capacity, and web server hosting. 
One such instance was used in this study to develop a web database through which the 
intersection ranking results can be accessed online. In the instance, a MySQL database was 
created to host a table with the identifying information of all the intersections extracted, as well 
as the ranking information. The table consolidated data from the TMC Identification file and the 
calculated rankings, into columns that were classified as three categories: 

• Front-end identifiers including road names, county, segment end latitude and longitude 
coordinates, and zip code. 

• Back-end identifiers including id column set as the primary key, segment codes. 
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• Ranking information including overall ranking, average aggregate congestion, and 
average planning time index. 

A python script was used to write the intersection ranking information to the database table using 
the MySQL Connector library. The end latitude and longitude coordinate columns were fused into 
one column, GPS coordinates. This facilitated the geolocation of the intersections using Google 
Maps links for each intersection. To make the database table visible via a web browser, the web 
development application Xampp was used. 

3.4.2 Website 

Xampp is embedded with a MySQL server and an Apache server. Both embedded servers are 
independent of the local Apache 2 and MySQL servers that may be running in the host machine. 
Both sets of servers cannot be operational at the same time, so the local servers were turned off 
and the Xampp servers booted up. In a web browser in the host machine, a localhost connection 
was made accessible. The MySQL server was accessed through the PhpMyAdmin page on the 
localhost, and the database table created and populated as detailed in the subsection above. A 
php file was written and it read the database table and displayed its contents in a web browser. 
The file also read and converted the GPS coordinates column into Google Maps links such that 
each intersection can be shown by the coordinates at its center. More php code scripts were 
written for the search and sort functionalities of the list of intersections, using a mix of JavaScript 
and Ajax programming. The search prompt is active for all columns of the table, while the sort 
prompt rearranges the entire table using ascending or descending order based on one column. 
The website was accessible at http://tntrafficsignals.org and was used by City of Murfreesboro 
and City of Franklin to assess the performance of their traffic signals. Per the request of TDOT 
and due to the high cost of hosting the website on Amazon EC2, the website has been taken 
down. However, an Excel spreadsheet has been attached to this report, showing all the traffic 
signals in the database and their rankings. 

http://tntrafficsignals.org/


  

 
18 

Chapter 4 Results and Discussion  
4.1 Rankings Formula Results 
Figure 4.1 shows the histogram of the traffic signal rankings, which is close to a normal 
distribution. The extreme left indicates that the poorly performing intersections had poor 
performance for each individual metric: an average congestion significantly below 1, an average 
planning time index significantly greater than 1, and a bottleneck ranking near the top of the list. 
These intersections were indicative of areas of near-constant heavy traffic including areas of 
business in downtown Nashville, Memphis, and Knoxville, and areas of periodic heavy traffic in 
the morning and evening time-of-day windows including areas surrounding educational 
establishments, K-12 and colleges/universities alike. On the other hand, the intersections at the 
other end of the spectrum were mostly located in rural areas. The center of the histogram is a 
result of different combinations of 𝑅𝑅𝑝𝑝,𝑅𝑅𝑐𝑐, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑏𝑏. Among the 1655 Tennessee traffic signals in the 
database, 18.73% have excellent performance, 65.49% have good performance, and 15.78% are 
performing poorly.   

In the development of the metrics, each TMC segment’s performance for the study period was 
measured up against its own best period (free flow speed and travel time). These measures, 
expressed as the ratios 𝑅𝑅𝑝𝑝 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑐𝑐, allowed the ranking formula to be uniformly applied across all 
segments without considering length of individual segment. In Figure 4.2, the vertical blue line is 
at average congestion value 1: all intersections occurring along this line have TMC segments on 
which the average speed was equal to the free flow speed. Conversely, the red horizontal line is 
at planning time index value 1: all intersections on this line have segments on which a driver 
would not need to allocate any additional time for a worst-case travel time. In Figure 4.2, an 
inverse correlation relationship is observed: the maximum planning time index decreases as the 
average congestion increases.  

 
Figure 4.1 A histogram of the intersection ranks. 
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Figure 4.2 A scatter plot of congestion, Cm, against the planning time index, Pm. 

4.2 Unsupervised K-Means Clustering Results 
The “R” values of the three main features contributing to rank: congestion, planning time index, 
and bottleneck ranking were used to perform K-means constrained clustering. Figures 4.3 and 
4.4 show the 6 traffic signal clusters. The green cluster is the best with the highest R values across 
the board, and the light blue cluster is the worst with the lowest R values. The clusters in between, 
ordered from the best to the worst, are: dark blue, dark brown, orange, and cyan.  

 
Figure 4.3 A 3-D view of the constrained K-means clustering result 
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Figure 4.4 An alternate 3-D view of the constrained K-means clustering result 

4.3 Weighing Factor Selection for the Ranking Formula 
Recall that there are three performance measures in the ranking formula: PTI, congestion, and 
bottle-neck ranking. In Chapter 3, it was mentioned that the weighting factors are crucial and 
their final values for the three metrics are 2.6, 5.9, and 1.5, respectively, but the discussion of 
how exactly they were selected was deferred to Chapter 4. Next, the weighting factor selection 
process will be discussed in detail.   

The initial weighting factors selection were 4, 4, and 2 for PTI, congestion, and bottle-neck ranking, 
respectively. The ranking results looked okay, but a systematic way was needed to make sure 
that they reflect the true performance of traffic signals. Discussions with the traffic engineers at 
City of Murfreesboro and City of Franklin took place, and they also provided the LOS letter grades 
of the traffic signals in their cities. Because some of their data was dated and the control delay 
was the only factor used to determine the LOS letter grades, their results were not used as a 
baseline to determine the weighting factors. Nonetheless, it was learned that too much weight 
had been given to PTI, since it is only a performance metric for the worst-case scenario. Another 
effort was to collect rankings of traffic signals from the public. A Google form was created, and 
the QR code of the link was advertised on the Middle Tennessee State University (MTSU) campus 
and various social medias. Dozens of responses were received. Although the input from the 
public was helpful in certain extent, it also had issues: (i) some intersections rated by the public 
do not exist in the database and (ii) the public’s views vary significantly.  

The final weighting factors were selected based on the unsupervised k-means clustering results. 
As mentioned before, the output of the k-means algorithm has 6 clusters. These clusters were 
manually ordered based on the performance of the signals so that cluster 1 is the best, cluster 2 
is the second best, and so on. The ranking formula result 0-10 was divided evenly into 6 groups, 
referred to as Ranks A-F. Rank A is the best group, rank B is the second best, and so on. Essentially, 
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the weighting factors that minimize the average distance between the ranking formula result and 
the k-means clustering result were selected.  

Table 1 Comparison of the presence of letter grade rankings within specific clusters for k-means 
clustering with a resolution of 0.1. 

 Rank A Rank B Rank C Rank D Rank E Rank F Cluster Totals 

 

Average Distance Calculation 

Cluster #1 56 94 0 0 0 0 150 Row Distance Total 94 

Cluster #2 0 149 181 0 0 0 330 Row Distance Total 181 

Cluster #3 0 0 355 43 0 0 398 Row Distance Total 43 

Cluster #4 0 1 22 374 0 0 397 Row Distance Total 22 

Cluster #5 0 0 0 86 108 4 198 Row Distance Total 90 

Cluster #6 0 0 2 54 111 16 183 Row Distance Total 225 

Rank Totals 56 243 560 557 219 20 1655 Average Distance 0.3958 

To better understand the average distance, see Table 1. The row distance is the sum of non-zero 
cell in each row multiplied with the distance from that cell to the diagonal cell in that row. For 
example, in the first row of Table 4.1, the row distance is 56 × 0 + 94 × 1 = 94; in the sixth row, 
the row distance is 2 × 3 + 54 ∗ 2 + 111 ∗ 1 + 16 ∗ 0 = 225.  The average distance 0.3958 is 
calculated by first summing all the row distances and then divide it by the total number of traffic 
signals 1655. The shorter the average distance, the closer the k-means and ranking formula 
results are. The optimal weights that provide the minimal average distance were searched using 
a brute-force approach, in which possible weight combinations were tested at various levels of 
resolution. These resolutions are essentially the step sizes of the weighting factor changes, and 
their corresponding optimal weight and average distance results are provided in Table 2. Note 
that resolution of 0.1 was used to determine the weighting factors. 

Table 2 Optimization weight and distance results based on resolution 

Resolution 
Weight Factors 

Average Distance 
Congestion Planning Time Index Bottleneck Ranking 

1.0 4.0 4.0 2.0 0.4012 

0.5 6.0 2.5 1.5 0.4006 

0.1 5.9 2.6 1.5 0.3958 

4.4 Comparison with LOS Results 
The ranking formula results were compared with the LOS results provided by City of 
Murfreesboro and City of Franklin for a list of 54 selected signalized intersections in their cities. 
Figure 4.5 below shows the comparison result where [0,10] was evenly divided into 6 intervals, 
corresponding to the 6 LOS letter grades. Among 15 traffic signals, there is a match between the 
ranking formula results and the LOS grades; the ranking formula results are better at 4 
intersections; for the rest of the 35 traffic signals, the ranking formula results are harsher. The 
difference was likely caused by the following three reasons: (i) the LOS grades of these 
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intersections were solely determined by a single performance metric: the average control delay; 
(ii) the cities’ data at some intersections was dated; and (iii) the cities might not have collected the 
average control delay data from different times of the day and different days of the week from 
an entire month.  

 
Figure 4.5 A comparison of our ranking results and the LOS letter grades at some local intersections 
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Chapter 5 Traffic Signal Controller Interfacing 
In Phase II of the project, the general goal is to implement Automated Traffic Signal Performance 
Measures (ATSPM) and perform adaptive traffic signal control. In Phase I, preliminary work has 
been done on traffic signal controller interfacing. Specifically, an Econolite Cobalt traffic signal 
controller with built-in high-resolution logger was acquired to test data generation and 
networking capabilities in order to perform ATSPM functionalities. See Figure 5.1 for the test 
setup. 

 
Figure 5.1 The test setup of the Econolite Cobalt Traffic Signal Controller 

The tests carried out were as follows: 

I. Data Generation 
Loop detector calls on Phase #4 were emulated by using a switch to break the connection 
between the phase-specific input pins in the B-port and the ground pin in the A-port. As 
indicated in Figure 5.2, detectors events were observed in the log file where event type 81 
and 82 represent detector OFF and detector ON events, respectively.  

 
Figure 5.2 Decoding of Log File for Data Generation testing 
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II. Networking  
The networking capability was tested using a wireless router and a PC. The signal 
controller was connected to the router via an Ethernet cable, and the PC was connected 
to the router’s Wi-Fi network. In the controller’s Ethernet settings, the IP address was 
configured to match the subnet of the router so that all devices are on the same network. 
Using a Windows PC’s command window, the IP address of the controller was pinged with 
a low round-trip response time, showing that the network connection was solid (see 
Figure 5.3). 

 
Figure 5.3 A snapshot of the Windows command prompt showing an average of 2ms ping response time 

III. Web Interface  
The controller was also accessed through the web front panel, using the configured IP 
address and port 8081. From the web interface, changes can be made to controller 
configurations and signal timings (see Figure 5.4 for the web front panel). 

 
Figure 5.4 A snapshot of the Web Front Panel showing the controller status 
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IV. Data Logging and File Transfer 
To configure the controller for ATSPM, hi-resolution data logging must be enabled in the 
settings. The log files that contain events at the intersection can be stored at 1-minute, 
15-minute, or 1-hour intervals. Figure 5.5 shows the Web Front Panel with the interval set 
at 15 minutes (right middle), which is most commonly used with ATSPM applications. The 
log files are located on the controller, in its set1 directory as shown in Figure 5.6 below 
where the WinSCP SSH File Transfer Protocol software on a PC was used to connect to the 
controller. When an ATSPM server is set up, the log files will be automatically transferred 
to the server for performance metrics calculation purposes. 

 
Figure 5.5 A snapshot of the Web Front Panel showing the hi-resolution event data logging enabled on 
the controller 

 
Figure 5.6 A snapshot of the WinSCP window showing the log files 
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Chapter 6 Conclusions  
In this project, an online performance ranking database with 1655 traffic signals in Tennessee 
was implemented. The traffic signals were extracted using the TMC segments. Using the traffic 
data in September 2021 and three performance metrics: congestion, planning time index, and 
bottleneck ranking, a ranking formula that ranks each intersection on a scale of 0 to 10 was 
developed. Among the 1655 Tennessee traffic signals in the database, 18.73% have excellent 
performance, 65.49% have good performance, and 15.78% are performing poorly. In general, 
rural intersections perform better than the urban ones. 

Unsupervised learning, i.e., k-means clustering was also used to divide the intersections into six 
clusters based on their performance. The weighting factors used in the ranking formula were 
finetuned using the k-means clustering results so that the average distance between the 
outcomes of the two different approaches was minimized. The ranking formula results were 
compared with the LOS letter grades of 55 intersections in the Cities of Murfreesboro and 
Franklin. It turned out that the ranking formula results were mostly harsher than the LOS letter 
grades, which only relied on the average control delay metric and were sometimes calculated 
using not up to date data. 

The online database implemented in this project could help agencies in Tennessee prioritize 
signal retiming. It could also help evaluate the performance of retiming and/or adaptive traffic 
signal control. Possible future works involve the following aspects: 

(1) Coordinating local agencies to review the performance of the worst performing 15.78% 
traffic signals and take actions if necessary.    

(2) Including more traffic signals in the database. The TMC segments are not available for all 
roads, and the starting and ending points of a TMC segment are often arbitrary. Because 
of this, longer than usual amount of time was spent to extract traffic signals in this project. 
It was noticed that the TMC segments used to extract intersections are often not available 
on side roads, and this limited the number of intersections in the database. To expand 
the database to more traffic signals, TDOT would need to work with INRIX to include more 
side roads in the TMC segments. Another possibility is to use the XD segments provided 
by INRIX. 

(3) Cost reduction. Hosting the online signal ranking database is somewhat costly. The 
monthly cost of using a powerful Amazon EC2 instance is typically between $150 and 
$200. Having the online database hosted at TDOT or MTSU campus would be more 
economical. 

(4) Incorporating more metrics including safety factors. INRIX just made some additional 
metrics available for certain signalized intersections. If possible, these metrics should be 
included in the ranking formula. Safety should also be included in the ranking calculation.  

(5) Need to monitor traffic signal performance in real-time. The current signal ranking results 
are calculated using historical traffic data in September 2021. It would be much more 
useful if the real-time score can be calculated and displayed online. This would require 
pulling data from the RITIS website periodically and frequently or implementing an ATSPM 
system, but the benefits could be huge because the agents would be able to tell the 
performance of a specific signal in real-time. 
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