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Executive Summary 
Pedestrian safety has declined significantly during the last decade. According to the Fatality 
Analysis Reporting System (FARS) database, pedestrian deaths on roads in the United States (US) 
increased by 51 percent from 2009 – 2019. This increase is unique to the US, as the pedestrian 
fatality trend in other developed countries is either constant or has declined over similar periods. 
Tennessee also exhibits a similar but worse trend, with a 117 percent increase in pedestrian 
deaths from 2009 - 2019. However, the fact that pedestrian exposure to traffic crashes has risen 
only by 26 percent highlights the problem of the rising severity of pedestrian crashes. 

Pedestrian safety studies addressing the current US pedestrian fatality trends often stumble on 
the question: Are pedestrian crashes getting more severe? Studies and media sources often tend 
to speculate and link the increase in fatalities with growing vehicle size, lack of pedestrian 
facilities, alcohol or drug impairment, speeding, and so on. Some studies correlate the increasing 
vehicle size with the increasing fatalities, thus implying a rising severity of pedestrian crashes. 
One lack among these studies is that they solely depend on the fatality data and not overall 
pedestrian involvement in traffic crashes. A few studies include pedestrian involvement but use 
secondary data sources for the analyses. Moreover, there is a severe lack of state-specific 
pedestrian safety studies to dissect the ongoing pedestrian crisis in the country. In the context of 
pedestrian safety in Tennessee, this research sets out to answer the causes of increasing 
pedestrian deaths over the last decade. The scope of this study was to explore all contributing 
factors that cause severe outcomes in urban pedestrian crashes in Tennessee and piece them 
together to provide insight into what aspects have contributed to crash severity increases over 
the years. This study followed the principles of the Safe Systems Approach and utilized an 
interdisciplinary approach to assess risks and provide countermeasures for the pedestrian safety 
situation.  

This study utilized Tennessee Integrated Traffic Analysis Network (TITAN) database, which 
contains critical information about all police recorded crashes in Tennessee, including pedestrian 
crashes. TITAN also records the injury outcome spectrum on the KABCO scale, facilitating the 
exposure and fatality information. This research further supplemented TITAN data by linking the 
socio-economic data from the US Census and determining pedestrians’ home location 
coordinates after geocoding the pedestrians’ address information included with the TITAN 
database. The data helped determine the critical variables associated with the severity increase, 
with the help of a frequency table and after performing trend analyses on total pedestrian 
involvement in crashes, total pedestrian fatality, and pedestrian fatality rate (PFR). The study also 
incorporated injury severity modeling using simple binomial logistic regressions to compare the 
severity disparity among variables in two time periods. The study compared the groups with the 
help of average discrete changes (ADC) for both periods and their difference to determine if the 
change was statistically significant. Other methods include home-based approaches and spatial 
visualization to enhance the findings from trend analyses. It also provides a tool to reduce 
pedestrian risks, which helps determine an optimal set of countermeasures in terms of budget 
and efficacy. 
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Findings 
Results show a significant overall increase in pedestrian crash severity in Tennessee from 2009 
to 2019 concerning fatal outcomes. Severe injury and other injury outcomes did not exhibit a 
significant trend. Urban area crashes showed a consistent and significant increase in severity 
over the years, unlike rural area crashes, where the crashes are naturally more severe. 
Furthermore, urban crashes make up the overwhelming majority of total pedestrian exposure 
and deaths, narrowing the scope of this study to urban areas in the state. The frequency table 
indicates a disproportionate fatality and involvement associated with elderly pedestrians, males, 
impaired pedestrians, impaired drivers, and pedestrians not in the crosswalk. Roads with higher 
speeds, multiple lanes, and straight maneuvers also report a higher proportion of fatalities than 
the involvement. Nighttime crashes with lighted and unlighted conditions also have a notable 
disparity in severity outcomes. In the case of vehicles, heavy vehicles and front-end collisions 
have the highest fatality rate compared to the other vehicle types and collision types, 
respectively. The pedestrian fatality rate visualizations helped to find the critical variables 
associated with the severity increase, with the visualization of fatality and involvement trend 
validating in terms of severity and magnitude. The increase in PFR is positive and significant for 
the pedestrian of the age group 51 – 65, male pedestrians, and pedestrians living far from homes. 
PFR is also positive and significant for female drivers and impaired drivers. There is a significant 
rise in PFR for non-intersection locations, multi-lane roads, and roads with a posted speed limit 
of 35 mph and higher in non-residential locations but not in parking lots and private roads or 
property. The fatality rate is also high on weekends, and nighttime crashes with a significant 
increasing trend over time. The PFR increase is also significantly associated with straight 
maneuver and non-hit-and-run crashes, but we cannot see a significant trend associated with 
vehicle types. Spatial visualization of non-residential crashes shows that they cluster around the 
major urban arterials. Despite high overall crash severity for commercial or freight vehicles, no 
significant trend is associated with the increase in severity. The binary logistic regression models 
reveal the critical attributes of a fatal outcome, such as pedestrian crashes involving heavy 
vehicles, impairment, dark-lighting conditions, elderly pedestrians, high-speed roads, and census 
characteristics such as high-income and walkable neighborhoods. Although the ADC associated 
with most of these variables was significant in determining the probability of outcomes, the 
difference in ADC between the two models is largely insignificant. Although statistically 
insignificant, we can see substantial increases in ADC in pedestrian and driver impairment, adult 
pedestrians, dark conditions, hit-and-runs, high-speed roads, high-income census blocks, and 
walkable neighborhoods. We also performed home-based distance analyses. Pedestrians 
involved in non-residential crashes live farther than the pedestrian involved in residential 
crashes. A trend-visualization of median pedestrian home-to-crash distances shows a significant 
trend of pedestrians getting struck farther from their homes over the years. 

Recommendations 
This report includes an interdisciplinary application of risk-based decision tools. Mitigation efforts 
have focused on hyper-local surgical interventions to mitigate risk at high-risk locations (known 
as hot spots). We have proposed a decision framework to identify crash hot spots, identify, and 
evaluate countermeasures, and select the most effective ones. However, these frameworks only 
capture the impact on the number and not the consequence of crashes. This study expands on 
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these decision frameworks to include model validation, quantitative risk assessment (by 
considering both the number and consequence of crashes), and explicit inclusion of crash 
outcomes in risk quantification and countermeasure evaluation. This approach allows for 
national, state, and city decision-making – rather than focusing efforts on individual, location-
based decisions. Using this proposed framework, decision makers can optimize their resources 
to select the countermeasures that most effectively mitigate risk to pedestrians. 

Even though the report points out several crash attributes associated with the increasing severity, 
we established that road design aspects disproportionately drive the increase. Speculative claims 
about the explosion of sport utility vehicles (SUVs) and trucks, the boom of e-commerce with 
commercial vehicles and delivery trucks encroaching the residential areas, and the increase in 
aging demographics driving the pedestrian severity remain largely untrue for Tennessee. This 
study recommends six core recommendations: 

1) Adopt a Safe Systems approach that holistically evaluates pedestrian safety 
2) Reform TDOT standard designs and drawings to mandate pedestrian friendly designs 
3) Reduce speed limits to a maximum of 35 mph in urban commercial corridors 
4) Implement quick-build traffic calming interventions on high-speed urban streets 
5) Focus on improving mid-block crossings with proven interventions 
6) Work with transit agencies to ensure transit corridors are safe for pedestrians  
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Chapter 1  Introduction  
Traffic crashes are one of the primary causes of injury-related deaths in the United States (US) 
(1). Usually, drivers, passengers, and non-motorized road users are the victims of traffic crashes, 
among which pedestrians are the most exposed and vulnerable users of the road. Traffic crash 
data and fatality trends from the last decade show a pedestrian safety crisis underway in the US. 
According to the Fatality Analysis Reporting System (FARS) dataset, although US pedestrian 
fatality numbers constantly dropped from 1979 until 2009, from 2009 to 2019, the country has 
seen an unprecedented fatality increase of 51 percent (2). The US pedestrian safety situation has 
worsened compared to traffic crash deaths involving other road users. While total lives lost in 
traffic crashes have increased slightly, the share of pedestrian deaths per traffic death rose from 
12 percent in 2009 to 17 percent in 2019 (2; 3) and has increased since. The US has had a 
comparatively poor performance in pedestrian safety over the years compared to other 
developed countries, whose pedestrian fatalities have continued to decline, while pedestrian 
safety in the US worsened significantly in the last decade (4). For instance, the pedestrian fatality 
trends were flat for Australia and the United Kingdom (5; 6). On the contrary, the European Union 
saw a gradual decrease in pedestrian deaths from 2010 to 2018, with an overall 19 percent 
decline (7). 

Unsurprisingly, most US states contributed to the rise, with the state of Tennessee being no 
exception. Pedestrian fatalities doubled in Tennessee from 72 in 2009 to 156 in 2019 (8). Part of 
this increase is because crashes have become more severe. According to the Traffic Safety Facts: 
Pedestrians from 2009 – 2019 provided by the National Highway Traffic Safety Administration 
(NHTSA), there was a slight increase in the total number of injured pedestrians in the US, unlike 
the fatality numbers showing a clear increasing trend. The growing likelihood of being involved 
in fatal pedestrian crashes can be observed even more distinctly in the case of Tennessee. 
Pedestrians involved in traffic crashes increased 26 percent between 2009 and 2019, from 1687 
to 2126, a comparatively small figure from the 117 percent rise in pedestrian fatalities in 
Tennessee over the same period (8). Figure 1.1 shows the overall pedestrian injury and fatality 
growth over the past 13 years. Compared to USA’s 51 percent, the increase in Tennessee also 
suggests that it has become one of the weaker performers in terms of pedestrian safety over the 
same period. 

 
Figure 1.1 Pedestrian Crash Trend in Tennessee 
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There is a lot of speculation regarding the rise in pedestrian fatalities. Safety advocates often 
point to the rise in vehicle size, suburbanization of poverty, speed, lack of pedestrian facilities, 
intoxication, driver distraction, and other factors. Similarly, others point to the pedestrian’s role, 
including distraction, intoxication, lack of attention to traffic control devices, and so on (9). To 
date, very little research has been conducted that tackles each of these factors to identify if they 
are part of the causal chain that results in a pedestrian being struck and killed or severely injured 
by a car (10).  

Walking is a fundamental mode of transportation and an integral part of life. Even the most car-
dependent individuals become pedestrians at times of the day while walking to vehicles. 
However, the population relying on walking, by choice or not, and those not having access to cars 
are more affected by a hazardous pedestrian safety environment. Besides contributing to 
unwanted injuries and inflicting an economic cost at the individual and national level, such a 
burden of injury and death can call to question the equity in the transportation system. As 
vulnerable road users, pedestrians always bear a disproportionate burden of injury than other 
road users; that is, they are nearly always harmed more than other participants in a crash (11). 
In most cases, the most harm from the pedestrian safety challenges faced in the city is borne 
disproportionately by lower income or minority populations.  

With a focus on the gravity of pedestrian safety issues in the US, especially in Tennessee, this 
study aims to assess the contributors to declining pedestrian safety in Tennessee. 
Fundamentally, what has happened in Tennessee to cause severe crashes to more than double 
in a decade, with no evidence of a coming decline? Then, what can the Tennessee Department of 
Transportation (TDOT) and other state partners do to stem this growth in pedestrian harm? This 
research, pinning itself to the Safe Systems Approach, seeks to create a complete picture of the 
growth in pedestrian crashes happening in Tennessee and identify the pedestrian crash types 
and the temporal trend followed by each type. This study aims to supplement traditional crash 
analysis with more nuanced system data, where available, to understand factors contributing to 
crashes. To that end, another goal of this study is to use the home-based approach to understand 
the causes and identify the hotspots of pedestrian crashes, focusing primarily on the severe and 
fatal ones. The home-based approach relies on understanding the home location of the crash 
victim, the socioeconomic and situational factors that contribute to crashes, and the burden of 
crashes in different neighborhoods. It is beneficial in aiming to understand geographic factors 
associated with crashes, like whether the crash victim was near or far from home. Finally, this 
report aims to implement a quantitative decision framework for selecting countermeasures to 
the pedestrian safety problem. 

1.1. Definitions 
For clarity of presentation, below are the definitions for some of the terms used in the report, 
which can have ambiguous meanings. 

• Safe Systems Approach: An approach adopted by the Federal Highway Administration 
(FHWA) to reduce death and serious injuries through design that accommodates human 
mistakes and injury tolerances. It works by building and reinforcing multiple layers of 
protection to both prevent crashes from happening in the first place and minimize the 
harm caused to those involved when crashes do occur. 
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• Pedestrian Crash: Traffic crashes involving at least one pedestrian and one vehicle. It 
excludes falls or pedestrian injuries generated by collisions with non-vehicle devices (e.g., 
bicycles, farm equipment, etc.). 

• Severe Injury: Pedestrian crash outcomes with the pedestrian sustaining incapacitating 
(serious) injury. 

• Fatal Injury: Pedestrian crash outcomes resulting in pedestrian death. 
• Pedestrian Involved: Pedestrians engaged in pedestrian crashes with or without injuries. 
• Urban areas: City areas as defined by the Tennessee Integrated Traffic Analysis Network 

(TITAN) database. Seventy-five percent of Tennessee's urban pedestrian crash locations 
lie within the Metropolitan Statistical Area of four major cities (Nashville, Memphis, 
Knoxville, and Chattanooga). 

• Pedestrian Fatality Rate (PFR): Pedestrian deaths per 100 pedestrians involved. 
• Pedestrian Home to Crash Distance (PHCD): Geodesic distance of the pedestrian from 

the crash location to their home. 
• Pedestrian position: Position of the pedestrian at the time of the crash concerning the 

roadway, crosswalks, or elsewhere. In case the pedestrian is on the roadway, the police 
officer notes if there are no crosswalks in the vicinity of the existing one or if it is 
reasonably far, based on their judgments. In that situation, the officer classifies the 
pedestrian position as “on the roadway – crosswalk not available.” 

• First Impact: First Impact determines whether the vehicle directly hit the pedestrian and, 
if yes, the hitting surface of the vehicle. Front End exclusively means front end impacts. 
Right Side includes the right corner near the headlight and the right side near-front, 
center, and near-rear. Left Side includes the left corner near the headlight and the left 
side near-front, center, and near-rear. Rear End includes the rear end, rear-left, and rear-
right corners near backlights. 

1.2. Organization of the Report 
The report is organized into five additional sections. Chapter 2 is the literature review section, 
which briefly outlines the past studies relevant to the scope of this project. Chapter 3 describes 
the data sources and delineates multiple approaches to fulfill this report's objectives. In Chapter 
4, the report presents the results of the analyses while illustrating them with visualizations. 
Chapter 5 is an interdisciplinary application of risk-based decision tools that help meet this 
report's final objective. Chapter 6 provides conclusions and recommendations pertinent to the 
issues discussed in this report and future research needs/ opportunities. 
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Chapter 2  Literature Review 
Traffic safety boasts years of research using sophisticated tools, but pedestrian safety analysis 
has sometimes lagged because of fewer robust datasets or exposure variables. Researchers have 
recently developed a more advanced understanding of motor vehicle crash dynamics with 
pedestrians and the causative factors. This section of the report reviews past studies to 
understand the critical aspects of pedestrian safety, including the factors significantly influencing 
the outcomes of traffic crashes involving pedestrians. It also attempts to identify gaps in the 
literature about pedestrian safety and the US pedestrian fatality trend. For better organization, 
this section has four sub-sections. 

2.1  Attributes of a Severe Outcome 
Studies have identified that severe outcomes in pedestrian crashes are associated with diverse 
variables. Studies often attribute serious or fatal injury in pedestrian crashes to these features: 
pedestrian and driver characteristics such as age, sex, height, alcohol and drugs influence, the 
color of clothing; crash environment; and situational characteristics such as land use, geometric 
design,  presence of sidewalks, weather, time of day, lighting conditions, intersections, crossing-
width, crossing infrastructure; and vehicle characteristics such as vehicle type, vehicle model, 
vehicle weight and size, presence of protection mechanism, and autonomous braking (12-14). 

Safety research often identifies elderly pedestrians, children, and pedestrians under the 
influence of alcohol or drugs as the most vulnerable pedestrian groups. Elderly pedestrians are 
often over-represented in traffic crashes and are likely to sustain fatal injuries during a traffic 
crash (15-19). Kröyer (2015) illustrated that the risk of dying increases dramatically as pedestrians 
are over 75 (20). Alcohol-intoxicated pedestrians have a substantial chance of severe injury (21; 
22) and quicker death (23). For children under 14, pedestrian crashes were among the top ten 
injury-related deaths in the US in 2019 (1). Researchers associate the cause behind this 
vulnerability with the declining, underdeveloped, and impaired cognitive and perceptual abilities 
of the elderly, children, and pedestrians under the influence of alcohol, respectively (24-27).  

Aside from the most vulnerable pedestrians, studies also reveal that pedestrian fatalities are 
skewed towards minorities, including African Americans and other people of color, and low-
income households (28; 29). After analyzing the FARS pedestrian fatality data from 2012 to 2017, 
Sanders and Schneider (2022) have found that Black and Native Americans disproportionately 
contributed to pedestrian fatality (30). Roll and McNeil (2022) hint at the past negligence in the 
land use development of minority neighborhoods being the cause of the current imbalance, as 
it precipitates increased traffic exposure and deficient infrastructure (28). A pair of studies have 
also suggested a prevalent racial bias in pedestrian safety as drivers yield more for White 
pedestrians than Black pedestrians (31; 32). The situation is even more difficult in the case of the 
homeless population. A study in Clark County in Nevada, from 2008 to 2011, found that the 
homeless population was almost 22 times more at risk than other residents (33). Another 
vulnerable pedestrian group is pedestrians who walk near their homes (34-36). Lee et al. (2015) 
highlighted that half of the pedestrians were involved in traffic crashes at zip code locations of 
their residential addresses (34). 
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Studies also looked at pedestrian and driving behaviors during traffic crashes and assessed what 
kind of behaviors produced severe or fatal outcomes. Like walking under the influence (37), many 
studies agree that driving under the influence of alcohol or drugs is linked to causing more severe 
injury to pedestrians (38-41). Studies also concur that distracted driving is another risk factor for 
pedestrians, especially in an unfavorable built environment. Lym and Chen (2021) have reported 
greater odds of striking a pedestrian severely while driving while distracted in work zones, curves, 
and when speeding (42). Khan and Habib (2022) found that distracted driving on linear roads with 
communication devices causes severe pedestrian injuries. Some studies claim that pedestrian 
crossing behavior also makes a difference in the injury outcome, as pedestrians are likely to 
sustain a more severe injury during midblock crossings than crossing at a signalized intersection 
(43) or intersections in general (40). 

The kinetic energy transfer from the motor vehicle to the body of a pedestrian is the reason 
behind severe outcomes (44). One of the most often cited infographics points to the chance of 
fatal injury as a speed function (Figure 2.1). 

 
Figure 2.1 Role of Speed in Pedestrian Crashes, reprinted from Vision Zero action strategy (45) 

In the literature, the vehicle speed is portrayed as the most prominent determinant of a 
pedestrian crash outcome as it governs the kinetic energy transfer during the impact from the 
vehicle to the pedestrian in the second-order (1/2*mass*velocity^2) (44; 46). Hussain et al. (2019) 
maintain that although the average speed of vehicles running on a road is correlated with the 
posted speed limit, actual impact speed during a crash dictates the risk of pedestrian fatality. 
That study utilized a meta-analysis to predict the pedestrian fatality risk from impact speed 
during the crash by reviewing 20 other studies. The results of the study suggest that on average, 
with a 1 km/h speed increase during impact, the probability of fatal outcome increases by 11 
percent, with chances of death of 5 percent, 10 percent, 50 percent, 75 percent, and 90 percent 
at the impact speeds of 30 km/h, 37 km/h, 59 km/h, 69 km/h and 80 km/h (47). Nevertheless, 
studies have widely used posted speed limits as a representation of speed in their pedestrian 
injury severity models and consistently observed higher posted speed limits significantly 
producing severe injuries than the lower ones (20; 37; 40; 48). Safe Speeds is one of the core 
strategies associated with the Safe Systems Approach.  
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Those speed-only relationships tend to ignore vehicle mass. To the extent of the authors’ 
knowledge, very few studies have looked at the direct relationship between the kinetic energy 
values and crash outcomes in pedestrians. Injury severity studies concerning motorized vehicle 
crashes involving pedestrians often highlight the role of the vehicle weight, another component 
of the kinetic energy, but in terms of vehicle size or vehicle type. Many studies associate 
increasing vehicle size with more severe outcomes in pedestrian crashes. Researchers often 
segregate cars and larger personal vehicles like sport utility vehicles (SUVs), pickups, vans, etc., 
into separate categories to compare the injury severity. The results mostly point to larger vehicles 
responsible for causing severe outcomes (15; 20; 40). Modern vehicles are fitted with pedestrian 
detection system with autonomous emergency braking technology and evasive steering, which 
could reduce the kinetic energy transfer before impact by hard braking, or completely avoiding 
the imminent crash (13). Research has shown that vehicles with this technology could potentially 
lower the crash involvement of pedestrians by 60 to 70 percent (49). 

Similarly, studies have also focused on the impacts of the built environment on the crash 
outcomes, including variables such as functional classification of the road, road width/ number 
of lanes, and intersection characteristics. Studies have characterized severe injury outcomes with 
the urban arterials, which are wide roads with attributes like higher speed limits (41) and roads 
lacking pedestrian crossing infrastructure roads. Upon scrutinizing the literature, these attributes 
again boil down to speed and vehicle size. Simply put, this kind of road encourages speeding and 
facilitates large vehicle operation, compared to a heavily traffic-calmed road in a dense 
downtown neighborhood of a city (41; 50). Ewing et al. (2003) identify wide and long streets as 
the features of suburban roads and suggest urban sprawl contributes to pedestrian deaths in 
traffic crashes (51).  

Last, inclement weather conditions and nighttime walking/ driving negatively affect pedestrian 
injury outcomes. During harsh weather conditions, loss of visibility and road friction can cause 
slippery surfaces and amplify maneuver errors in drivers, increasing pedestrian injury severity 
(52). Also, a decrease in visibility during late-night walking or driving increases the reaction time 
of the drivers and pedestrians, affecting the injury severity in pedestrians (48). 

2.2 Pedestrian Crash Typology 
Although some pedestrian types are associated with a more severe outcome, a correlation exists 
between a combination of variables dictating the pedestrian fatality. For instance, Sanders and 
Schneider (2022) performed a multivariate analysis concerning race and observed that child 
pedestrians from Black and Hispanic backgrounds were more likely to get killed, while the same 
was valid for elderly Asian pedestrians (30). Other studies found that children and elderly 
pedestrians are also more exposed to serious safety hazards in parking lots and driveways (53; 
54). Hezaveh and Cherry (2018) investigated pedestrian crashes in Tennessee involving 
pedestrians intoxicated with alcohol, with an elevated risk of severe outcomes observed more at 
night, among the middle-aged males, and during the weekends (37). Haule et al. (2019) found 
that aging pedestrians were more prone to close-to-home pedestrian crashes. More than 35 
percent of crashes involving pedestrians above 65-year age occurred within 0.5 miles from their 
home, and 64 percent of the crashes occurred within 2 miles (36).  

Only a few studies have created a typology to classify pedestrian crashes, rather than looking at 
the interaction between variables using manual classification or other clustering techniques. 
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Stutts, Hunter, and Pein (1996) created a crash typology of pedestrian crashes from 5000 police-
reported pedestrian crashes from six states to identify the problems and suggest appropriate 
countermeasures. The study attributed more than 80 percent of pedestrian crashes to nine crash 
types based on the vehicle involved, drivers’ and pedestrians’ behaviors, locations, and 
circumstances. The study highlights that each crash type varied with the characteristics of the 
pedestrians and road environment (55). Preusser et al. (2002) identify eighteen different crash 
types and categorize them into seven categories for the 852 and 1234 pedestrian crashes data in 
Washington DC and Baltimore city, respectively (56). Fontaine and Gourlet (1997) analyzed the 
fatal pedestrian crashes in France between March 1990 and February 1991. The study classifies 
the crashes into four groups: 

• Elderly pedestrians crossing the road in the daytime in urban areas 
• Children playing in the urban streets in the daytime 
• Pedestrians under alcohol influence walking at night in rural areas 
• Other pedestrians in secondary crashes or during mode transfer 

One of the study’s findings is that children and the elderly are the most vulnerable groups among 
the pedestrians (57). The above studies agree that there were no significant relationships 
between the diverse types of pedestrian crashes, implying that developing a pedestrian typology 
could avoid redundant analyses on non-significant variables. Additionally, Sasidharan, Wu, and 
Menendez (2015) used a data mining technique for cluster analysis to investigate pedestrian 
crash severity to reduce heterogeneity in the pedestrian data. The study uses a latent cluster 
analysis to form seven homogeneous clusters of pedestrian crashes from a large dataset. The 
study concluded that one factor could significantly affect a cluster’s crash outcome, while the 
same factor could have a negligible effect on the other (58). 

Injuries are often underreported while working with the police data, especially for the 
pedestrians. A 1990 study in Orange County, California, reports at least 20 percent of 
underreporting for severity in the police data for pedestrians (59). Safety researchers 
recommend matching the police data with the hospital entries for a correct estimate of injuries 
and severity reporting (60). In a recent North Carolina study, Harmon et al. (2021) investigated 
police-reported pedestrian crashes from 2017 and linked the pedestrians injured by matching 
with their hospital (emergency department visit) data, which have comparatively more reliability 
in terms of injury reporting. The study discovered that although the police data labeled 
pedestrians as “not injured,” the hospital had instances of pedestrian follow-ups, with some 
getting admitted days after the crash. The authors also discovered disparities regarding the 
treatment of injuries among men and women and Black and White pedestrians (61). Although 
severe and suspected injuries are subject to substantial underreporting, fatal injuries are almost 
captured perfectly by the police data (60).  

2.3 Use of Home-Based Approaches 
Haule et al. (2019) applied a newer approach of using actual addresses to precisely calculate 
distances by integrating GIS and Google application programming interface (API) services to 
gauge the relationship of residence proximity to crash locations in the case of elderly pedestrians. 
One key finding of this study was that aging pedestrians were more prone to close-to-home 
pedestrian crashes as more than 35 percent of these crashes involving pedestrians above 65-
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year age occurred within 0.5 miles from their home, and 64 percent of the crashes occurred 
within 2 miles (36). 

Hezaveh and Cherry (2019) developed a deeper application of home-based analysis by 
investigating the role of neighborhood characteristics of the pedestrian on the crash outcome 
that may have occurred in other areas. Specifically, this method can help understand some of 
the cultural or geographically correlated factors that influence traveler behavior and therefore 
aim to understand if methods can be developed to target those neighborhoods or socioeconomic 
groups. Similarly, this approach can assess the impact burden on different groups (62). 

2.4 US Pedestrian Crash Trends 
Most pedestrian safety studies are pertinent in depicting pedestrian crashes’ nature and severity. 
Studies have also modeled the injury severity by considering the heterogeneities associated with 
time and space (40; 63). Although it is vital to understand the significant variables affecting 
pedestrian crashes with the help of these studies, they focus on the cross-sections of time and 
do not precisely present how each factor affecting the injury severity has progressed over time. 
For instance, although children are one of the most vulnerable pedestrians and are likely to die, 
even from a minor vehicle impact, children’s deaths are not causing the rise in overall pedestrian 
fatalities. In truth, children’s pedestrian fatalities have significantly decreased over time (64). 

A few studies have investigated the longitudinal effects of the aforementioned factors over the 
years, directly or indirectly responsible for the sudden increase in pedestrian fatality trends. 
Trend analysis in the US from 1977 to 2016 reported a hundred percent increase in pedestrian 
fatalities are correlated with larger vehicles (SUVs, vans, and pickups), 26 percent growth on roads 
with posted speed limits of 35 mph and higher, and 41 percent increase on roadways with four 
or more lanes (64). Two pedestrian fatality trend analyses were done around a similar time, based 
on the FARS database, and have reported substantial growth in pedestrian deaths in traffic 
crashes involving SUVs, with a rise of around 80 percent. Besides, both studies identified a 
significant upward trend in pedestrian deaths in urban areas, arterials, and dark conditions  (10; 
65). A recent study looks back 20 years and explores the effects of pedestrian fatalities and larger 
vehicles. The study reports that replacing larger vehicles (SUVs, pickups, and minivans) with cars 
would prevent 8000 pedestrian fatalities from 2000 to 2019. Despite being one of the significant 
contributors, the study results suggest that larger vehicles are not solely behind the dramatic 
surge in the deaths of pedestrians in the last decade (66). 

Studies such as Tefft et al. (2021) and Ferenchak and Abadi (2021) are some of the most recent 
investigations on the US pedestrian fatality trend using the FARS dataset (10; 67). Tefft et al. (2021) 
listed fatal pedestrian death counts for every year from 2009 - 2018 but only reported the 
percentage changes for 2009 and 2018. Despite not including the trend, the findings from this 
study corroborate the predecessors’ findings, such as fatality increase on high-speed roads 
(urban non-freeway arterials), nighttime crashes, crashes involving SUVs and cars, and so on. 
Because the nighttime accounted for more than 85 percent of the increase in US pedestrian 
deaths, Ferenchak and Abadi (2021) decided to only look at nighttime pedestrian fatalities 
concerning variations among other variables such as infrastructure, human factors, vehicle 
characteristics, and situational factors. The study further attempted to answer whether the 
pedestrian fatality increase could be attributed to the increasing severity of the pedestrian 
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crashes or not by looking at the ratio of pedestrian fatality to the pedestrian injured. The study 
was unable to answer that question (67). 

The fundamental limitation of the above studies is that they only look at the fatality data provided 
by the FARS dataset but not the overall injuries. Ferenchak and Abadi (2021) and Hu and Cicchino 
(2018) attempted to incorporate the exposure data from the National Automotive Sampling 
System (NASS) and General Estimates System (GES), which itself is not the parent database for 
the FARS fatality data, but a sample dataset incorporating traffic crashes from all US states (68). 
Our study, although foundationally like Hu and Cicchino (2018) and Ferenchak and Abadi (2021), 
overcomes this limitation by examining a single base dataset for fatalities and pedestrians’ 
involvement in Tennessee, and also incorporates other novel addition of home-based and 
distance approaches and census data merger at a disaggregate level. 
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Chapter 3  Methodology  
To characterize the growth in pedestrian fatalities in Tennessee, we aim to dissect the police 
crash database (TITAN) and examine the types and causes of crashes over a 10+ year span of 
time. We exclude crashes that occur on interstate highways since most of those are related to 
work-zone crashes or crashes related to disabled vehicles, both out of the scope of this study. 
We also focus specifically on urban crashes for reasons described later. We begin with a high-
level descriptive analysis of pedestrian fatality trends and their associated variables. We aim to 
maintain a strong focus on only those pedestrian crashes that result in severe injuries and 
fatalities and identify trends over time that could cumulatively account for the significant increase 
in fatalities. 

3.1 Data 
The core data for this report is the statewide police crash data, TITAN, from 2009 to 2020. We 
supplement this data with data from the US Census American Community Survey (2013 - 2019) 
to identify demographic trends over time. We also use geocoding to determine the coordinates 
from the pedestrian/drivers' home addresses. 

3.1.1 Police Crash Data (TITAN) 
Tennessee Integrated Traffic Analysis Network (TITAN) database system is managed by the 
Tennessee Department of Safety and Homeland Security. All traffic safety-related data, including 
traffic crashes occurring in Tennessee, are reported to the database system by law enforcement 
agencies. Before storing the information, it tests the data for completeness and accuracy and 
prepares it for future use. To maintain uniformity in crash records across the US, as required by 
the Department of Safety and Homeland Security, TITAN follows Model Minimum Uniform Crash 
Criteria (MMUCC) guidelines to record traffic crash details, including injury outcomes in the 
KABCO scale (69). The scale codes K for a fatal crash, A for incapacitating (serious) injury,  B for 
non-incapacitating apparent injury (minor) injury, C for possible injury, and O for no injury (70). 
The TITAN database has three key elements: person, crash, and vehicle datasets. The Person 
dataset includes information on all people involved in the crash, including pedestrians, drivers, 
and passengers. Specifically, the person dataset includes the person's age, gender, race, 
ethnicity, person's action during the crash, evidence of alcohol and drug presence, person's 
distraction, driving license status and expiration information, violations if present, and outcome 
of the crash in terms of severity levels experienced by the person. The Crash database includes 
crash details such as date, time, county, land use (urban and rural), coordinates, number of 
fatalities, number of injured, type of intersection if intersection related, lighting condition, 
manner of collision, type of road/ route, speeding indication, type of traffic way, and other details 
relevant to the police. The vehicle (Unit) database includes details on every vehicle involved in the 
crash, including the stopped vehicles with or without drivers and information about the built 
environment. The unit database includes information such as hit-and-runs indication, hazardous 
material indication, Gross Vehicle Weight Rating (GVWR), place of the first impact, the extent of 
damage in the vehicle, vehicle body size, type and color, type of maneuver (straight, backing, 
right-turn, left-turn and so on), driver presence indicator, license plate details, manufacturer's 
name and model, vehicle age and commercial vehicle indication. It also contains information 
about the posted speed limit, road alignment, road profile and surface type, condition of road 
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surface, the number of travel lanes, travel direction, name of the street, sequence of events that 
occurred, and so on. We gained access to the TITAN dataset containing personal identification 
information, such as the driver's and pedestrian's home addresses and the owner's vehicle 
identification number (VIN). This portion of the dataset was essential to applying the Home-Based 
Approach to traffic safety. 

In the Python Environment, we prepared the data by extracting pedestrians from the person 
dataset and then identified all crashes linked to those pedestrians as pedestrian crashes. We 
filtered out person, vehicle, and crash data unrelated to pedestrian crashes. Then, we linked each 
pedestrian entry with the corresponding crash and striking vehicle entries with the driver details. 
In the rare case of multiple vehicle-pedestrian crashes, we only linked the vehicle and driver 
information of the largest vehicle. However, while merging the vehicle data with the crash and 
pedestrian datasets, we prioritized the smaller vehicle if the police determine the smaller 
vehicle's fault or in the case where the large vehicle is not in operation.  

We encountered some complications while using the TITAN data. Our main study period spans 
11 years, from 2009 to 2019. During this period, the technology for data collection improved with 
the advent of smartphones and portable computers. From our experience, while using the TITAN 
data, we also notice data collection quality improvement. For instance, TITAN started to report 
the races of pedestrians extensively from around 2013, while the earlier data reported a sizable 
number of "unknown" entries for the race. The crash location coordinates and pedestrian 
address reporting also suffer similar problems. For a longitudinal analysis like this, these 
problems will affect the significance tests and may misrepresent the growth percentage. We 
overcame this by using pedestrian fatality rates (PFRs), the total fatality per pedestrian involved 
during pedestrian crashes. Assuming that missing data are random occurrences, taking such 
ratios normalizes the voids created by missing data as the existing data (fatality and detailed 
data) would act as a sample representing the population. The data also had missing addresses 
from September 30, 2019, onward, so we excluded those data from the home-based approach 
and census information analyses. Nevertheless, we have a relatively comprehensive series of 
digitized data spanning about a decade that we use for this study. 

3.1.2 Geocoding with Google API 
TITAN also records the addresses of the people involved in the crashes. With access to their 
addresses, we can also determine the coordinates where the pedestrians and drivers reside 
using geocoding tools. We used Google API to convert locations in the "address" format to 
coordinates. Google API also enables users to geocode addresses and return details such as the 
type of the establishment, coordinates, and so on. We also calculated the pedestrian and driver 
home distance using Python's geodesic distance calculator function. Home distance is the 
Euclidean (crow-flies) distance between the home location of the pedestrian/ driver and the crash 
location. 

3.1.3 Census Data 
While the TITAN data contains a wide range of helpful information, the data is limited to what the 
police officer observed during the crash and does not encompass the socio-economic 
characteristics of the crash location. However, TITAN does record the crash location coordinates, 
enabling us to link the crash locations to their respective census block groups and supplement 
the socio-economic aspects of the crash location. Census block group data are the smallest unit 
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of locations with information such as average race, income levels, median income, household car 
ownership, education levels, and so on in the neighborhood, provided by the American 
Community Survey. We tied this information to each pedestrian crash. 

Thus, we not only had census information about the crash locations but also the socio-economic 
information of the home locations of pedestrians and drivers. We joined the census information 
with the census block groups using the TIGER Line Shapefiles from the US Census website with 
the help of ArcGIS Pro software. Then, we performed spatial join analysis in ArcGIS Pro to map 
the coordinates to their respective block groups. The American Community Survey only has 
census information on block groups from 2013 onwards, so we omitted the 2009-2012 data while 
performing census-related analyses. 

3.2 Pedestrian Injury Trend Analysis 
In this report, we conducted trend analysis, focusing on the fatal crashes and Pedestrian Fatality 
Rates (PFRs) using simple regression analyses and cross-tabulation tools. We first tabulated the 
data in a frequency table to identify the variables that contribute most to the fatal injuries. We 
then performed one-way Analysis of Variance (ANOVA) tests on the attributes within each 
variable. This helped us to determine whether the variables' trends are statistically significant or 
not. One-way ANOVA can sufficiently check the variations in the PFR or fatal crash counts for 
variables having two or more classifications. For instance, if we do the one-way ANOVA test on 
the age of pedestrians and it fails, that suggests no significant variation among the constituents 
of age. The total increase or decrease in the PFR is distributed uniformly amongst them. 

Then, we utilized Microsoft Excel and Stata for the one-way ANOVA and basic regression models. 
These regressions helped us identify what variables are statistically correlated with the increasing 
trend in the severity of pedestrian crashes by looking at their respective p-values of the slope 
coefficient. We also visualized the significant trends with the Tableau software. 

3.3 Pedestrian injury severity modeling 
We estimated binary logistic regression models with fatal injury outcome as the dependent 
variable and diverse characteristics of pedestrian crashes such as pedestrian, driver, built 
environment, temporal, vehicle characteristics, and socio-economic variables as the independent 
variables. It helps to determine the variables contributing the most to pedestrian fatality. The 
binary logistic regression model is among the simplest and most easily interpretable type of 
discrete outcome models. It follows a random utility maximization framework and estimates 
factors contributing to a discrete outcome's changing probability. In our case, a discrete outcome 
is either a fatal or non-fatal crash outcome and can be predicted by independent variables 
correlated with that outcome (e.g., higher speeds). Multiple formulations can provide more 
robust outcome prediction, including ordered logistic regression and others we can explore in 
future work. It is essential to note that the model estimates the probability of severe injury, given 
that the individual has already encountered the crash. It does not estimate the probability of the 
individual's involvement in a crash since we do not have exposure data to estimate relative risk. 

We also aimed to understand the severity of pedestrian crashes and how they have changed over 
time. For a more straightforward analysis, we broke the data into two groups for 2013 – 2015 and 
2016 – 2019. We bifurcated the data into two-time segments in 2015/2016 because this is when 
the noticeable trend of increasing injury severity occurs. Due to the lack of census data, we do 
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not include 2009 – 2012 data for the modeling process. Interaction variables are generally 
preferred in a model with few variables to assess before-aftereffects. However, we wanted to see 
the severity disparity associated with all variables in our model. At this point, it is more 
manageable to separately model two groups. That said, we were unable to compare the 
coefficients and log-odds ratio across the logistic regression models, unlike linear regression 
models, across these groups due to the possibility of unobserved heterogeneity (71; 72). Mood 
(2010) proposes probability change methods with the comparison of marginal effects to compare 
the variables across groups and models for logistic regression models (71). Based on the marginal 
effects, Mize et al. (2019) suggest calculating average discrete change (ADC) or discrete change at 
representative values (DCR) to compare two non-overlapping groups (73). We adopted calculating 
ADC and the group differences associated with ADCs in the case of our study as a tool to compare 
groups (time-points). We also followed the software and analysis guidelines Mize et al. (2019) 
provided for our calculations using Stata. Please refer to Mize et al. (2019) for more information 
on ADC and DCRs (73). 
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Chapter 4 Results and Discussion  
This section of the report presents the results of descriptive statistics of the pedestrian crash, 
regression and trend analyses, and multivariate modeling.  

4.1 Statewide crash characteristics 
A total of 22,719 pedestrians in Tennessee were involved in 21,457 crashes from January 1, 2009, 
to December 31, 2020. From those crashes, 1,369 pedestrians were killed. Out of 22,719 
pedestrians involved, we excluded 569 as they were struck on the interstate highways. We also 
excluded the data from the year 2020, being a potential outlier because of the COVID-19 pandemic. 
To observe the outlier effect of 2020, refer to Figure 1.1, where there is a significant rise in 
pedestrian fatalities but also a considerable decrease in total pedestrians involved (implying a spike 
in severity). Of the 20,445 pedestrians involved in crashes, 1,030 died. Total fatalities per year 
reduced to 64 in 2012 and have risen yearly since, more than doubled to 138 deaths in 2019 (and 
continued higher in 2020). 

Pedestrian fatality rate (PFR) has been rising in Tennessee suggesting that pedestrian crashes are 
becoming more severe. Figure 4.1a shows that PFR has a statistically significant increasing 
pedestrian fatality rate trend with a regression coefficient of 0.218 (p-value = 0.011). The graph 
reveals an overall increase of 63 percent from 2009 to 2019. Whereas Figure 4.1b gives an overview 
of the overall composition of injury classes, including fatal, over the years in Tennessee. We can see 
that severe and fatal pedestrian crashes increased as a proportion of all crashes. This fact motivates 
us to explore and identify the factors driving the increase in pedestrian deaths. 

 
Figure 4.1 a) Pedestrian crash trend for fatal outcomes (per 100 involvement) b) Pedestrian crash 
composition for all types of injury outcomes   

4.1.1 Urban and Rural Crashes 
A total of 18,766 pedestrians were involved in crashes in urban Tennessee, with 811 pedestrian 
fatalities, and 1,679 were involved in rural Tennessee, where 219 pedestrians died, as illustrated by 
Figure 4.2. First, we divided the dataset into two groups according to the crash location setting: 
urban pedestrian crashes and rural pedestrian crashes. As illustrated in Figure 4.2, rural pedestrian 
crashes make up less than 10 percent of Tennessee's total pedestrian crashes. They contribute to 
about twenty percent of the total fatalities and are getting more severe over the years. Still, they 
are a relatively small proportion of total crashes distributed over large areas. The bulk of the 
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increase in pedestrian crashes statewide occurred in urban areas. Of the 74 additional fatalities 
that have occurred in 2020, compared to 2012, 61 (82 percent) have occurred in urban areas. 
Moreover, upon breaking down the Figure 4.1a into urban and rural fatal crashes, we also observed 
that urban pedestrian crashes are the reason for a consistent and significant overall increase in 
pedestrian fatalities. PFR trend for urban crashes increased by 58 percent from 2009 – 2019 (coef. 
= 0.193, p-value = 0.008), while the increase was not significant for rural crashes (p-value = 0.111). 
Thus, we aimed to investigate the larger number of crashes causing significant and steady increases 
in pedestrian crashes in urban areas.  

For the remainder of this report, we aimed to assess the factors contributing to the annual growth 
in urban pedestrian crashes. 

 
Figure 4.2 Pedestrian Crash and Fatality Trends in Urban and Rural Tennessee 

 
Figure 4.3 Pedestrian crash trend for fatal outcomes for urban and rural areas 

4.1.2 Descriptive statistics 
Table 1 is a frequency table of fatal pedestrian crashes and the total involved crashes for each 
variable from 2009 to 2019. We divide the variables into four significant groups: pedestrian 
characteristics, driver characteristics, road design and situational characteristics, and vehicle 
characteristics. The table also illustrates the functional classification of each variable with their 
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potential (expressed as percentages) to cause fatal injuries to pedestrians. For instance, the 
presence of alcohol and drugs under the pedestrian characteristics shows that 22 percent of the 
pedestrian fatality were intoxicated. In comparison, intoxicated pedestrians only constituted about 
6 percent of total pedestrians involved in the crashes. It suggests that alcohol and drug are critical 
variables that require further analysis. Likewise, pedestrians above the age of 51, male pedestrians, 
the position of pedestrians during the crash (including pedestrians attempting to cross in places 
without marked crosswalks), and so on are some variables that might be driving the increase. 

Table 1 also gives an overview of the unknown and missing values in the TITAN database. Other 
notable variables with disproportionate weights among fatal and total pedestrian crashes are 
driver’s gender, driver’s driving under the influence (DUI), crashes happening in non-intersection 
locations, high speed and multiple lane roads, land use, dark lighted and unlighted conditions, 
straight (midblock) maneuver, heavy vehicles, and front-end collisions. 
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Table 1 Frequency Table Illustrating Variables in Pedestrian Crashes for Non-Interstate 
Urban Tennessee (2009 – 2019) 

a  Partial Data - Data not available after September 2019 

Variables Fatal (%) Crash (%)    Variables Fatal (%) Crash (%)   
Pedestrian Characteristics  Built Environment and Situational Factors contd. 
Age      Intersection     

15 years and below 38 4.7 2849 15.2  No 650 80.1 13807 73.6 
16 - 35 180 22.2 6582 35.1  Yes 161 19.9 4959 26.4 
36 - 50 197 24.3 3891 20.7  Number of lanes     
51 - 65 278 34.3 3749 20.0  Three or less 449 55.4 11259 60 

66 years and above 118 14.5 1695 9.0  Four or more 325 40.1 3919 20.9 
Sex      Unknown 37 4.6 3588 19.1 

Female 228 28.1 7822 41.7  Weekdays/ Weekends     
Male 583 71.9 10944 58.3  Weekdays 574 70.8 14236 75.9 

Race      Weekend 237 29.2 4530 24.1 
Black 244 30.1 5691 30.3  Time of Day     
White 449 55.4 8646 46.1  Midnight - 6 am 133 16.4 1825 9.7 
Other 26 3.2 377 2.0  6 am - noon 100 12.3 3710 19.8 

Unknown 92 11.3 4052 21.6  Noon - 6 pm 133 16.4 7143 38.1 
Alcohol/ Drug      6 pm - midnight 445 54.9 6088 32.4 

Not Present 632 77.9 17670 94.2  Lighting      
Present 179 22.1 1096 5.8  Daylight 173 21.3 10753 57.3 

Distance from Home      Dark - lighted 460 56.7 5490 29.3 
Less than 2 mi 352 45.2 7957 43.6  Dark - unlighted 144 17.8 1576 8.4 

2 mi or more 332 42.6 7836 43.0  Others 34 4.2 947 5 
Unknown 95 12.2 2443 13.4  Parking lot or private property   

Locationa      Neither 764 94.2 13805 73.6 
Road - Not in crosswalk 324 41.6 3929 21.5  Parking lot 30 3.7 3615 19.3 

Road – Crosswalk not 
available 

162 20.8 1850 10.1 
 

Private property 17 2.1 1346 7.2 

In the crosswalk 29 3.7 1472 8.1  Land Use       
Not in roadway 86 11 4631 25.4  Residential 190 23.4 5190 27.7 

Unknown 178 22.8 6354 34.8  Non-Residential 621 76.6 13576 72.3 
           

Driver Characteristics      Vehicle Characteristics     
Age      Maneuver      

14 - 25 145 17.9 3081 16.4  Straight (Intersection) 123 15.2 1966 10.5 
26 - 55 399 49.2 7351 39.2  Straight (Mid-block) 512 63.1 6962 37.1 

56 years and above 157 19.4 3748 20  Backing and parking 30 3.7 2848 15.2 
Others/unknown 110 13.6 4586 24.4  Turning 35 4.3 2996 16 

Sex      Other/unknown   111 13.7 3994 21.3 
Female 201 24.8 6511 34.7  Vehicle Type     

Male 505 62.3 8581 45.7  Cars 336 41.4 9202 49 
Unknown 105 12.9 3674 19.6  SUVs 156 19.2 3356 17.9 

Race      Pickups and Minivans 189 23.3 3580 19.1 
Black 260 32.1 5063 27  Heavy Vehicle 66 8.1 792 4.2 
White 432 53.3 9205 49.1  Others/Unknown 64 7.9 1836 9.8 
Other 13 1.6 481 2.6  Model Year     

Unknown 106 13.1 4017 21.4  1999 and older 157 19.4 3199 17 
Alcohol/ Drug      2000 - 2009 389 48 7976 42.5 

Not Present/ Unknown 726 89.5 18266 97.3  2010 - 2019 164 20.2 3714 19.8 
Present 85 10.5 500 2.7  Unknown 101 12.5 3877 20.7 

Driving License      Hit-and-run     
Valid 515 63.5 10032 53.5  Yes 187 23.1 4405 23.5 

Invalid/ Not licensed 162 20 3324 17.7  No 624 76.9 14361 76.5 
Unknown 134 16.5 5410 28.8  First Impact     

  Front End 513 63.3 7732 41.2 
Built Environment and Situational Factors  Rear End 23 2.8 2048 10.9 
Posted Speed Limit      Right Side 93 11.5 3400 18.1 

15 mph or less 56 6.9 5772 30.8  Left Side 73 9 2350 12.5 
16 - 34 mph 128 15.8 5262 28.0  Other 109 13.4 3236 17.24 

35 mph and more 266 32.8 7732 10.5       
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4.2 Pedestrian Injury Trend Analysis 
The TITAN database provided us with the injury profile of all reported pedestrian crashes that 
happened in the state of Tennessee (notwithstanding reporting errors). Using that information, we 
can demonstrate that most of the rise in pedestrian deaths in Tennessee is not due to the increase 
in the number of pedestrians exposed to the traffic but due to the increase in severity of the 
pedestrian crashes. We narrowed the scope of our analysis to the urban pedestrian crashes to look 
at the different variables, which can be broadly classified into pedestrians, drivers, road design and 
situational, and vehicle characteristics, investigate further and identify the significantly increasing 
trends of pedestrian fatality rate (PFR). 

Again, utilizing the TITAN data with injury profiles, we calculated PFR by dividing the total fatalities 
by the total number of involved pedestrians for each variable’s given functional classification (sub-
feature). We calculated average PFR, percent change in PFR, and estimated a PFR change using the 
trend lines equation from 2009 to 2019. We also performed one-way ANOVA tests for the PFR values 
to ascertain that PFRs are statistically different for each functional classification of any variable. It is 
also common among studies to only look at fatal crashes and their trends. Emulating such studies, 
we also performed ANOVA to see if there is any significant statistical difference between pedestrian 
fatalities. Trend lines are regression lines fitted for each feature with years as the independent 
variable and PFR for that feature as the dependent variable. Table 2 reports the PFRs for pedestrian, 
driver, road environment, vehicle characteristics, average rates, percentage changes, and the 
significance of trend lines. 

 
Figure 4.4 Pedestrian Crash Trends: a) Age and b) Gender of Pedestrians from 2009 – 2019 
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4.2.1 Pedestrian Characteristics 
TITAN records critical pedestrian characteristics such as age, sex, race, and presence of 
alcohol/drugs, but does not capture other variables, such as income and education levels, that 
might influence pedestrian crash severity. Due to the missing information from October 2019 for 
distance from home and pedestrian’s position during the crash, we could not carry the ANOVA tests 
out for fatal crashes for those variables. In the case of PFRs, except for pedestrians’ distance from 
home, we found all variables varying significantly within themselves with a 0.05 significance level. 
Fatality and PFR have considerably high average values, compared to the others, for the age group 
51 – 65 years. Age groups 16-35 and 51 – 65 show a statistically significant increasing PFR trends, 
and although the overall increase in PFR was higher for the age group 16 – 35 (coef. = 0.141; p-value 
= 0.012), compared to 59.1 for 51 – 65, the trend is strong for the latter (coef. 0.314; p-value = 0.045). 
It was interesting to see the decreasing PFR for children and elderly groups of pedestrians, despite 
being cited as the most vulnerable pedestrians in the literature, albeit the trends being not 
statistically significant (Table 2 and Figure 4.4). 

 
Figure 4.5 Pedestrian Crash Trends: a) Race and b) Position of the pedestrian during the crash 

With the average PFR double that of females, male pedestrians are affected more by the increase 
in pedestrian fatality with twice the PFR slope of 0.240 (p-value = 0.008) compared to the female 
PFR of 0.12. Despite showing higher figures for the overall increase for both PFR and fatal crashes, 
female pedestrians, do not have a statistically significant coefficient for the increase (Table 2 and 
Figure 4.4).  

Potentially missing entries for races during 2009 – 2013 are potentially responsible for the large 
increase of 2000 percent and 500 percent for the Black and White pedestrians’ deaths from 2009 
to 2019. Only relying on the fatal entries for trend analyses would unfortunately give significant 
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steep slopes of 10 (p-value = 0.000) and 9.6 (p-value = 0.000). We avoided the misrepresentation of 
data by employing the PFRs. The PFR side of Table 2 illustrates that race does not have a significant 
role in the pedestrian severity increase, except for Others, which is only 3 percent of crashes (refer 
to Table 2). It is similar to the case of the pedestrian’s position, which also has a large portion of 
missing data spanning 2009 – 2013. However, we still calculated PFR for these situations and curb 
the effect of unknown entries to some extent. While all entries were insignificant, pedestrian 
crashes were significantly increasing in severity in the places where no crosswalk was available 
(coef. = 0.024). Moreover, the largest growth since about 2012 in total fatal crashes has been in “not 
in crosswalk” locations, accounting for the bulk of the increased number of and rate of fatality 
growth. Figure 4.5 illustrates the effect of non-crosswalk fatality risk and the effect of poor crash 
coding, particularly for non-fatal cases. 

 
Figure 4.6 Pedestrian Crash Trends: a) alcohol or drug presence and b) distance from home of the pedestrians  

Similar is the case of walking under the influence of alcohol or drugs. By only noticing the initial and 
final pedestrian fatality values of 5 and 35, we could see a large increase of 600 percent in fatal 
crashes for intoxicated pedestrians. However, the regression trends show otherwise, with non-
significant increases (Table 2). One of the variables we extracted using the “home-based approach” 
analysis was Distance From Home. ANOVA results show that there is not enough variation between 
the variables “less than 2 miles” and “2 miles or more.” However, the regression trend for crashes 
at 2 miles or more from the pedestrian’s homes in Table 2 shows a significant and large increase 
in PFR (coef. = 0.345 and p-value = 0.001). Figure 4.6 illustrates the trends related to intoxication 
and distance from home that has not shown strong differences over time. 



 

 
21 

4.2.2 Driver Characteristics 
With the sheer number of details recorded by the TITAN about the driver, we were able to utilize 
driver demographic details and explore if drivers are associated with the pedestrian safety crisis in 
the state. While all variables significantly varied for fatal pedestrian frequency, two out of five did 
not pass the ANOVA test for the variation of PFR within the variables: driver’s age and driving license 
status. 

Regarding the driver’s age, on average, thirteen pedestrians died in the 14-25 age group as drivers, 
while the average was 36 and 14 for the 26-55 and 56 and above age groups, respectively. 
Unsurprisingly, the PFR trend associated with the driver’s age group of 26-55 is significant (coef. = 
0.254, p-value = 0.031), with an almost 50 percent overall increase from 2009 to 2019 (Table 2). 
Although fatality linked with drivers under the influence of alcohol or drugs is 10 percent of the 
total fatality (see Table 1), Table 2 shows that PFR associated with them has increased by 258 
percent from 13 deaths per 100 involved to 47 deaths during 2009 – 2019. Figure 4.7 illustrates the 
pedestrian fatality trends for driver’s age and their impairment status from alcohol or drugs. 

 
Figure 4.7 Pedestrian Crash Trends: a) Driver's Age and b) DUI status of the driver 

Although PFR for the age group 14-25 has increased by more than 300 percent, it is not as 
substantial as others. Both percent increase in PFR and fatal crashes point to female drivers 
increasing the pedestrian fatality trend. Total pedestrians killed when struck by a vehicle driven by 
a female driver accounted for 21 percent in 2009 and increased to 38 percent in 2019. Even though 
male drivers were still associated with the majority of fatalities, female drivers contributed to more 
than three times more fatalities, from 11 pedestrian deaths to 38. Consequently, PFR associated 
with the female drivers is statistically significant, with a 215 percent overall increase (coef. = 0.278, 
p-value = 0.015) (refer to Table 2). During the same time, PFR associated with the male driver 
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increased by 22.9 percent, which was not statistically significant. Table 2 also depicts the annual 
mean pedestrian fatality associated with the Black drivers at 23.6 and White drivers at 39.3. 
However, both increased by 173.3 percent and 83.9 percent, respectively. PFR for Black driver 
doubled (coef. = 0.374, p-value = 0.002) and White drivers increase by 71 percent. We did not find 
that driving license status caused a significant rise in PFR. The most significant growth associated 
with the drivers’ sex and race is illustrated in Figure 4.8. 

 
Figure 4.8 Pedestrian Crash Trends: a) Sex and b) Race of the Drivers 

4.2.3 Road Design and Situational Factors 
All of the values of the variables of this group are sufficiently varied within themselves, as shown 
by the ANOVA results from Table 2, road design and situational factors section. We can see where 
the increase in fatality and PFR is taking place for the road design attributes. The variables that are 
linked to the positive growth of fatal pedestrian crashes and PFR are happening at non-intersection 
locations (coef. = 0.215, p-value = 0.005), with the high speed (speed limit equal to or more than 35 
mph) roadways having four or more lanes (coef. = 0.486, p-value = 0.004). The roads with 35 mph 
or more speed limit have a regression line slope of 0.371 (0.01 significance). Figure 4.9 illustrates 
the nature of trends and how the PFR has increased for high-speed wide roads with multiple lanes 
and non-intersection locations. 

Neither parking lots nor private property roads are causing the increase in fatalities. Although 
statistically insignificant, those variables have a negative slope causing a slight decrease. However, 
PFR in those locations that are not a parking lot or private property has increased by almost 60 
percent (coef. = 0.242, p-value = 0.012) (see Table 2).  



 

 
23 

Table 2 shows that fatal crashes occurring in residential areas, as defined by the TITAN dataset, 
have barely increased from 17 in 2009 to 22 in 2019. Although it accounted for 23 percent of the 
overall fatal crashes, the proportion decreased from 31 percent to 20 percent in 11 years. On the 
other hand, fatal crashes happening in non-residential areas saw a 134 percent increase. The PFR 
trend for the latter is also statistically significant, with a 69 percent increase from 3.61 to 6.1 during 
the study period (coef. = 0.233, p-value = 0.010). Figure 4.9 (d) shows the respective PFR trends for 
pedestrian crashes happening in residential and non-residential areas. 

Another set of variables under this category is the time of the day, lighting, and weekdays or 
weekends. 6 pm to midnight attribute of time of the day variable and dark attribute of lighting 
variable are almost relatable. Crashes happening from 6 pm to midnight have almost doubled, from 
33 to 62, over the 11 years study period, with an annual average of 40.5 deaths. 
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Figure 4.9 Pedestrian Crash Trends a) Posted Speed Limit, b) number of lanes, c) intersection and non-
intersection locations d) Residential and non-residential land uses 

Crashes in the dark–lighted and dark-unlighted conditions have also doubled from 33 to 65 and 11 
to 24, respectively. However, only crashes happening from 6 pm to midnight and dark–lighted 
conditions are significant to PFR (p-value = 0.031 and 0.030), and both cause an overall increase of 
39 percent. Daylight crashes are attributed to very few fatal crashes compared to nighttime ones. 
However, although not significant and very small, PFR for daylight crashes has doubled from 1.1 
deaths per 100 pedestrians to 2.0 deaths in 11 years. Similarly, crashes happening from 6 am to 
noon (Table 2). Figure 4.10 shows the increasing trends for dark-lighted and unlighted conditions. 
Finally, weekend crashes are gradually associated with more severe injury outcomes in pedestrians. 
Crashes on the weekend saw a 57.5 percent increase in PFR from 4.78 in 2009 to 7.52 in 2019. The 
increase is statistically significant, with a regression coefficient of 0.387 and a p-value of 0.013. 
Weekday crashes are relatively less severe than weekend crashes and do not have a significant 
upward trend, as per the regression results (see Table 2 and Figure 4.10). 
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Figure 4.10 Pedestrian Crash Trends: a) lighting and b) weekends/ weekdays 

4.2.4 Vehicle Characteristics 
Vehicle characteristics are the final group of variables. Variables like vehicle type, hit and run, 
backing maneuver, and so on are often the most speculative variables in the media and literature, 
which we have classified under this category. Although all variables pass the ANOVA test for 
detecting variations relating to fatal crash frequencies, the ANOVA test for variation within the data 
finds that vehicle age classifications have no significant variation among themselves. Additionally, 
hit and run crashes do not distinguish themselves from non-hit-and-run crashes (see Table 2). 

The straight maneuvers at intersection and midblock are the most common maneuver that causes 
fatal crashes. Other maneuvers include backing, parking, and turning; however, they constitute less 
than one in twenty total fatal crashes. The straight maneuver conforms with the overall increase in 
fatal pedestrian crashes, where the PFR caused by straight midblock maneuvers was 6.83 in 2009, 
and it became 10.36 in 2019, almost a 52 percent increase with significance (coef. = 0.327, p-value 
= 0.021). The straight maneuver at intersection is, however, not associated with a significant 
increase in PFR. Despite having a statistically significant downward slope, backing, parking, and 
turning maneuvers are responsible for only 6 percent of fatal crashes (refer Table 2 and Figure 
4.11, vehicle characteristics part). 

Surprisingly, no vehicle type has shown a significant increase in the PFRs. We can observe higher 
chances of getting injured if struck by larger vehicles, but in terms of a trend, none of the regression 
lines are within the statistical significance threshold of 0.05. Heavy vehicles such as trucks, on 
average, killed six pedestrians yearly during the study period, and PFR associated with it is 8.36, the 
highest among the vehicle types. SUVs, too, on average, have higher chances of killing a pedestrian, 
with a PFR of 4.6, which is 26 percent higher than cars. Figure 4.11 will clarify the ambiguous trends 
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associated with vehicle and pedestrian fatality. Vehicle age (model year minus crash year) and 
vintage (termed model year) in the Table 2 do not have particularly strong differences over time. 
Neither the aging fleet nor advanced safety features, meant primarily to protect car occupants, have 
improved pedestrian severity over time. This is an area of future research since the rollout of new 
vehicles correlates perfectly with growth in severity of pedestrian crashes. 

Despite the sizeable overall increase of over 800 percent (possibly due to the missing data) in fatality 
from 3 to 28 during the study period, hit and run pedestrian crashes had an overall decrease in PFR 
of 37.6 percent, accounting for 7.5 pedestrian deaths per 100 pedestrian crashes to 4.68 pedestrian 
deaths per 100 crashes. On the contrary, Table 2 and Figure 4.12 shows that non-hit and run 
crashes have significantly contributed to the overall pedestrian fatality trend with a steady overall 
slope of 0.226 and within 0.05 significance level. Lastly, PFRs are associated significantly with left 
and right side collisions instead of front end collisions. Although PFR for the right side doubled (2.1 
to 5.4) during the study period, fatal crashes due to collision on the left side of the vehicle were zero 
in 2009, increasing to 14 in 2019. Despite the significant increases in fatality associated with the 
right and left side collisions, front-end collision remains more than 100 percent more lethal. No 
rear-end crashes caused a fatality in 2019. 

 
Figure 4.11 Pedestrian Crash Trends: a) Vehicle model year, b) Vehicle Type (Size) 
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Figure 4.12 Pedestrian Crash Trends: a) Hit-and-runs and b) Place of first impact c) Type of maneuver 
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Table 2: One-way ANOVA tests (Pedestrian Fatality and PFR) and Linear Regression Results (PFR) 

Variables 

Fatal Crashes 
 

Pedestrian Fatality Rate (PFR) 

Fatal Mean 
 

ANOVA 
 

PFR Mean 
 

ANOVA Linear Regression 

2009 2019 
2009 - 
2019 

% 
increase F p  2009 2019 

2009 - 
2019 

% 
increase F p slope 

t- 
Statistic p 

Pedestrian Characteristics 
  

Age 15 and below 4 2 3.5 -50.0 23.62 0.000 
 

1.29 0.95 1.301 -26.8 46.02 0.000 -0.055 -1.43 0.188 

16 - 35 10 27 16.4 170.0 1.99 4.10 2.703 105.7 0.141 3.13 0.012 

36 - 50 18 33 17.9 83.3 5.49 7.97 4.992 45.2 0.217 1.79 0.107 

51 - 65 13 36 25.3 176.9 5.53 8.80 7.294 59.1 0.314 2.33 0.045 

66 and above 10 13 10.7 30.0 8.26 6.16 6.986 -25.5 -0.007 -0.04 0.969 

Sex Female 14 32 20.7 128.6 46.87 0.000 2.17 4.10 2.894 88.7 38.23 0.000 0.119 2.04 0.072 

Male 41 79 53.0 92.7 4.82 7.03 5.275 45.9 0.240 3.36 0.008 

Race Black 2 42 22.2 2000.0 26.10 0.000 7.14 5.71 4.527 -20.1 10.95 0.000 -0.010 -0.07 0.942 

White 11 68 40.8 518.2 4.87 6.76 5.131 38.9 0.122 1.80 0.105 

Other 1 1 2.4 0.0 14.29 2.63 7.875 -81.6 -1.118 -2.96 0.016 

Alcohol/ 
Drug 

Not Present 50 76 57.5 52.0 81.15 0.000 3.39 4.32 3.571 27.4 57.42 0.000 0.092 1.68 0.128 

Present 5 35 16.3 600.0 26.32 24.48 16.779 -7.0 0.176 0.31 0.766 

Distance 
from 
Homea 

Less than 2 mi 22 29 32.0 - 

- - 

4.23 4.97 4.443 17.6 0.62 0.440 0.011 0.18 0.861 

2 mi or more 11 41 30.2 - 2.11 5.91 4.094 180.4 0.345 4.85 0.001 

Positiona Not in crosswalk 9 35 29.5 - 

- - 

14.06 9.64 8.745 -31.4 54.41 0.000 -0.088 -0.36 0.728 

Crosswalk not 
available 

4 23 14.7 - 8.51 14.29 8.811 67.9 0.463 2.70 0.024 

In the crosswalk 0 4 2.6 - 0.00 2.63 1.804 - 0.126 1.26 0.240 

Not in roadway 1 7 7.8 - 0.77 1.77 1.818 129.8 -0.017 -0.22 0.831 
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Variables 

Fatal Crashes 
 

Pedestrian Fatality Rate (PFR) 

Fatal Mean 
 

ANOVA 
 

PFR Mean 
 

ANOVA Linear Regression 

2009 2019 
2009 - 
2019 

% 
increase F p  2009 2019 

2009 - 
2019 

% 
increase F p slope 

t- 
Statistic p 

Driver Characteristics 
  

Age 14 - 25 5 22 13.2 340.0 39.95 0.000 
 

1.84 7.51 4.700 308.5 2.14 0.136 0.280 1.91 0.088 

26 - 55 32 55 36.3 71.9 5.25 7.77 5.419 48.1 0.254 2.55 0.031 

56 and above 11 21 14.3 90.9 4.40 5.26 4.158 19.6 0.120 1.04 0.327 

Sex Female 11 38 18.3 245.5 50.82 0.000 2.00 6.31 3.087 215.0 29.78 0.000 0.278 2.99 0.015 

Male 37 61 45.9 64.9 5.69 7.00 5.866 22.9 0.162 1.74 0.115 

Race Black 15 41 23.6 173.3 74.57 0.000 3.96 7.96 5.095 101.2 10.56 0.000 0.374 4.18 0.002 

White 31 57 39.3 83.9 4.04 6.90 4.699 71.0 0.211 2.32 0.046 

Other 2 0 1.2 -100.0 3.13 0.00 2.402 -100.0 -0.322 -2.37 0.042 

Alcohol/ 
Drug 

Not Present/ 
Unknown 

50 103 66.0 106.0 113.3 0.000 3.43 5.46 3.934 59.1 20.68 0.000 0.183 3.69 0.005 

Present 5 8 7.7 60.0 13.16 47.06 19.041 257.6 2.084 2.43 0.038 

Driving 
License 

Valid 12 77 46.8 541.7 23.78 0.000 6.15 6.38 5.182 3.8 1.26 0.274 0.028 0.38 0.710 

Invalid/ Not 
licensed 

0 30 14.7 - 0.00 6.30 4.421 - 0.354 2.00 0.077 

Road Design and Situational Factors 
  

Intersecti
on 

No 46 89 59.10 93.47 77.78 0.000 
 

4.05 6.44 4.678 59.01 9.81 0.003 0.215 3.64 0.005 

Yes 9 22 14.63 144.44 2.51 4.21 3.194 67.7 0.149 1.49 0.171 

Number 
of Lanes 

Three or less 33 56 40.8 69.7 5.10 0.000 3.66 5.25 3.989 43.4 74.59 0.000 0.092 1.24 0.247 

Four or more 18 53 29.5 194.4 7.29 10.39 7.937 42.6 0.486 3.76 0.004 

Posted 
Speed 
Limit 

15 mph or less 5 2 5.1 -60.0 65.71 0.000 1.01 0.37 0.980 -63.6 131.6 0.000 -0.075 -1.74 0.115 

16 mph - 34 mph 12 12 11.6 0.0 2.78 2.46 2.441 -11.5 0.016 0.26 0.800 

35 mph and above 38 97 57.0 155.3 6.70 11.13 7.96 66.1 0.371 3.33 0.009 

Days Weekdays 39 74 52.2 89.7 43.48 0.000 3.36 5.24 4.011 55.9 3.65 0.000 0.127 2.12 0.063 
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Variables 

Fatal Crashes 
 

Pedestrian Fatality Rate (PFR) 

Fatal Mean 
 

ANOVA 
 

PFR Mean 
 

ANOVA Linear Regression 

2009 2019 
2009 - 
2019 

% 
increase F p  2009 2019 

2009 - 
2019 

% 
increase F p slope 

t- 
Statistic p 

Weekend 16 37 21.5 131.3 4.78 7.52 5.127 57.5 0.387 3.08 0.013 

Time of 
Day 

Midnight - 6 am 7 22 12.1 214.3 50.29 0.000 6.31 10.28 7.251 63.0 29.88 0.000 0.227 0.78 0.457 

6 am - noon 7 16 9.1 128.6 2.35 4.27 2.664 81.6 0.102 1.13 0.286 

Noon - 6 pm 8 11 12.1 37.5 1.29 1.60 1.878 24.5 0.072 0.82 0.431 

6 pm - midnight 33 62 40.5 87.9 7.11 9.87 7.246 38.8 0.242 2.55 0.031 

Lighting Daylight 10 21 15.7 110.0 52.09 0.000 1.09 2.02 1.610 85.9 34.69 0.000 0.043 1.24 0.245 

Dark - lighted 33 65 41.8 97.0 8.13 11.30 8.260 39.1 0.375 2.58 0.030 

Dark - unlighted 11 24 13.1 118.2 9.48 11.76 9.042 24.1 0.065 0.29 0.781 

Others 1 1 3.1 0.0 1.89 1.16 3.656 -38.4 -0.063 -0.23 0.824 

Parking 
lot or 
private 
property 

Neither 51 109 69.5 113.7 117.0 0.000 4.73 7.52 5.466 58.9 95.01 0.000 0.242 3.15 0.012 

Parking lot 4 2 2.7 -50.0 1.35 0.57 0.838 -57.6 -0.082 -1.35 0.211 

Private property 0 0 1.5 - 0.00 0.00 1.208 - -0.010 -0.13 0.901 

Land use Residential 17 22 17.2 29.4 50.19 0.000  3.84 4.95 3.67 28.9 5.37 0.031 0.076 1.43 0.186 

Non-residential 38 89 56.5 134.2  3.61 6.10 4.51 69.0 0.233 3.25 0.010 

Vehicle Characteristics 
  

Maneuver Straight(Intersectio
n) 

8 18 11.1 125.0 84.22 0.000 
 

5.67 9.05 6.14 59.6 42.71 0.000 0.424 1.93 0.085 

Straight (Mid-block) 38 72 46.5 89.5 6.83 10.36 7.30 51.6 0.327 2.80 0.021 

Backing and 
parking 

3 1 2.7 -66.7 1.23 0.40 1.052 -67.1 -0.134 -3.83 0.004 

Turning 0 4 3.2 - 0.00 1.20 1.174 - 0.018 0.26 0.804 

Vehicle 
Type 

Cars 22 47 30.5 113.6 31.52 0.000 3.31 4.96 3.641 49.8 9.60 0.000 0.159 1.75 0.115 

SUVs 12 25 14.2 108.3 5.06 7.23 4.599 42.7 0.145 1.20 0.261 

Pickups/Minivans 12 21 17.2 75.0 4.08 6.31 5.298 54.5 0.190 1.85 0.098 
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Variables 

Fatal Crashes 
 

Pedestrian Fatality Rate (PFR) 

Fatal Mean 
 

ANOVA 
 

PFR Mean 
 

ANOVA Linear Regression 

2009 2019 
2009 - 
2019 

% 
increase F p  2009 2019 

2009 - 
2019 

% 
increase F p slope 

t- 
Statistic p 

Heavy Vehicle 3 7 6.0 133.3 6.52 8.97 8.363 37.6 0.300 0.80 0.444 

Model 
Year 

1999 and older 19 8 14.3 -57.9 15.01 0.000 3.87 8.51 5.081 119.9 2.48 0.101 0.134 0.84 0.422 

2000 - 2009 29 42 35.4 44.8 4.13 7.08 4.996 71.4 0.359 4.11 0.003 

2010 – 2019b 0 47 14.9 - 4.17 6.03 3.675 44.6 0.336 2.28 0.049 

Hit-and-
run 

Yes 3 28 17.0 833.3 69.49 0.000 7.50 4.68 4.414 -37.6 0.01 0.928 -0.023 -0.18 0.864 

No 52 83 56.7 59.6 3.57 6.36 4.368 77.8 0.226 3.03 0.014 

First 
impact 

Front End 43 64 46.6 48.8 116.3 0.000 6.97 8.24 6.629 18.2 33.67 0.000 0.159 1.40 0.195 

Rear End 2 0 2.1 -100.0 1.08 0.00 1.100 -100.0 -0.105 -1.80 0.105 

Right Side 5 18 8.5 260.0 2.10 5.44 2.682 158.9 0.273 3.65 0.005 

Left Side 0 14 6.6 - 0.00 5.30 2.947 - 0.341 4.00 0.003 

Other/Unknown 5 15 9.9 200.0 1.63 4.25 3.28 160.9 0.268 3.69 0.005 

a  Calculations skipped for missing values 
b 2010 data used for calculation for the cars with make year 2010-2019 
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4.2.5 Residential and non-residential crashes 
Crashes in commercial areas follow linear patterns along arterial corridors. These corridors, as we 
have shown above, are most dangerous. On the contrary, distributed residential crashes tend to be 
seemingly random but also tend to be less severe. By partitioning crashes by commercial and 
residential zones, analysts can highlight high injury networks and corridors to focus on safety 
interventions.  

 
Figure 4.13. Crashes associated with non-residential (commercial/business) land uses and residential areas 
in Memphis and Nashville 

4.2.6 Commercial vehicle crashes/ Freight vehicles  
Freight-related crashes involving larger freight vehicles are more likely to cause severe injuries. On 
average, 30 percent of crashes involving single-unit trucks with three or more axles or tractors with 
trailers caused fatal or severe injuries.  

Injury outcomes of freight-related crashes differ regarding pedestrian characteristics, driver 
characteristics, temporal and weather factors, and the crash environment. Specifically, freight-
related crashes involving males, pedestrians over 40, White, and with alcohol or drug presence are 
more likely to have a higher probability of severe or fatal crashes. Similarly, freight vehicle drivers 



 

 
33 

who are males, White, aged over 55 years, and have alcohol or drug presence are more likely to be 
involved in severe crashes. Crash severity is also greater if the freight vehicles are going straight. 
Crash severity is also positively associated with the time of day and weather. Crashes occurring 
during early morning and late night and inclement weather conditions, such as cloudy, rain, or 
snow, have a higher probability of severe injury outcomes. The environmental factors of crashes 
are also correlated with injury outcomes. Severe crashes are more likely to occur in dark conditions 
without lighting, and half of the crashes occurring in those conditions cause severe injuries. Crash 
severity is also greater if these crashes occur on the US- and state- routes, roads with a higher speed 
limit, and roads with more lanes. The road surface condition, including wet, snowy, and icy, is 
associated with crash severity.  

Compared to nonfreight-related crashes, freight-related crashes are more likely to occur when 
freight drivers are backing the vehicle or maneuvering the vehicle for parking-related activities on 
private property or parking areas. If urban freight deliveries are completed with smaller vehicles, 
as some recent studies have suggested is likely, we might see fewer severe crash outcomes. As 
freight patterns change and delivery vehicles move increasingly to more urban and residential 
areas, there will be more opportunities for conflicts between commercial vehicles and pedestrians. 
However, if carriers continue using smaller vehicles for the last mile delivery, there is evidence to 
suggest that crashes between vulnerable road users and this type of delivery vehicle are less likely 
to be severe or fatal. 

4.3 Multivariate modeling approach  
It is informative to describe crash severity in a multivariate modeling approach to control for 
confounding variables and multiple correlations. As described in Chapter 3, we estimated a 
Binomial Logistic regression model to assess the factors contributing to the probability of a crash 
being fatal (i.e., the probability of death, given that a pedestrian was involved in a crash). This 
approach allowed us to understand the variables that significantly contribute to the increase in the 
severity of crashes, which is the main driving force behind the increase in overall pedestrian 
fatalities in Tennessee. Table 3 presents the results of the crash severity models. The table presents 
two models: 2013-2015 (the period of slow fatality growth) and 2016-2019 (the period of rapid 
fatality growth) with Average Discrete Change (ADC) for each period and the difference between 
the ADCs to determine if the ADCs are significantly different between the two periods. Both models 
are significant and have relatively high predictive values with relatively high pseudo-R2 values. The 
results are discussed in the following pages. In all cases, the odds ratios reflect the relative change 
in odds compared to the base variable. An odds ratio of less than 1.0 reflects lower odds, and more 
than 1.0 reflects higher odds relative to the base variable. For example, young children (age <16 
years) have lower odds (0.56) of fatal injury than 16-35-year-olds for the 2013-2015 model. The ADC 
differences were not within the acceptable significance level, suggesting the absence of severity 
disparity for the two periods. It could be due to an arbitrary disaggregation of a relatively 
continuous time variable or that the small increases across ADC differences (i.e., positive ADC 
differences) increased severity on many variables. Increases in severity span most variables.  

4.3.1 Demographics 
As we observed with the trendlines, age is a significant predictor of severity. In almost all cases, 
compared to the base age group (16-35), the odds of a fatal injury increase. The ADC values are 
significant among themselves with a small increase in the recent years (with insignificant 
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differences) suggesting that these variables probably do not substantially drive the increase in 
fatality over time, although the difference is positive. Children had shifting odds ratios and ADC 
(negative to positive) between the two time periods, but those variables are insignificant in both 
models, meaning that the odds of death are practically the same as the 16-35 age group, given a 
crash. The pedestrian’s race is significant and positive; White pedestrians were much more likely to 
experience a fatality in a crash. That value did not change between periods. Pedestrian gender was 
not significant in the model and was therefore excluded. Pedestrian intoxication was flagged as a 
contributor to increased severity as its ADC also doubled over time, although the difference in ADCs 
is not significant. 

Including data from the census block group of pedestrians, pedestrians who live in affluent 
neighborhoods involved in crashes have a substantially lower chance of death, but the ADC has 
increased with the difference in ADCs being weakly significant (0.1 significance). As the proportion 
of residents in a neighborhood walking to the destination increases, the chance of fatal injury also 
decreases substantially. These two factors may relate to access to better walking infrastructure in 
affluent, walkable neighborhoods. Last, pedestrians who live in neighborhoods with a high 
proportion of Black residents (controlling for pedestrian’s race) have a higher chance of fatal injury 
(statistically insignificant). The census-level variables could reflect various unobserved 
infrastructure and socio-economic variables that could contribute to diminished safety. For driver 
demographics, the model results show that men have a higher contribution to severe pedestrian 
crashes, though in recent years, female contribution is not statistically significant.  

4.3.2 Impairment 
Driver impairment (alcohol or drugs) had one of the most substantial effects in the model, and that 
effect has increased since 2016, based on the ADC values (albeit statistically insignificant). The 
average marginal effect or ADC was 4.3 percent for the period 2013-2015, which increase to 6.5 
percent in 2016 - 2019. The odds of an impaired driver killing a pedestrian (given a crash) was 3.08 
between 2013-2015, and 4.65 from 2016-2019. The chances of an impaired driver crashing are also 
likely higher. Moreover, we do not know the impairment status of the ~20 percent of drivers who 
fled the crash scene. We find that hit-and-run collisions have greater odds of fatal injury and have 
increased in the most recent time period, with ADC increased from 1.9 percent to 4.1 percent, with 
a weakly significant difference in ADCs. 

4.3.3 Road and Situational conditions 
Intersections have a lower relative risk (given a crash) than midblock locations, likely because of 
reduced speeds, driver awareness, and traffic control devices. The improvement of the most recent 
performance of intersections (relative to midblock conditions) is explained by the observation that 
midblock crossings have become more dangerous and have contributed more significantly to fatal 
crashes in recent years (see Table 3, difference in ADC is not significant). A related variable, the 
driver continuing straight (i.e., not turning) and striking a pedestrian crossing midblock, has one of 
the most substantial chances of increasing severity. Being hit mid-block increases odds of death by 
a factor of three but hasn’t changed substantially between periods with almost similar ADCs. The 
two most remarkable roadway/situational variables are known pedestrian risk factors. First is the 
speed of the roadway. Compared to typical urban street speeds advocated by safety advocates (16-
34 mph), faster roads double or quadruple injury risk. The most common speeds on urban arterials 
range from 35-40 mph, with double-fatal injury risk compared to slower streets. Urban arterials 
(often state highways in urban areas) with speed limits of 35 mph or above increase fatal injury risk 
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by a factor of three. This type of street has become more dangerous – the ADC increased from 3.3 
percent to 4.7 percent, highly significant among themselves but with statistically insignificant 
difference. 

Another significant risk factor is lighting. Nighttime fatality risk increases substantially compared to 
daylight and has become riskier recently. For the earlier time period, ADC for lighted dark conditions 
was 3.9 percent and unlighted dark conditions was 3.8 percent. For the recent time periods, ADC 
increased by 1.6 percent and 1.9 percent for lighted and unlighted dark conditions, respectively. 
Taken together, high-speed arterials, at midblock locations, in dark conditions are among the most 
influential factors contributing to the increase in fatalities in the built environment. These also tend 
to be multilane roadways responsible for a large proportion of Tennessee’s fatalities growth (Figure 
4.9).  

4.3.4 Vehicle characteristics 
Finally, the oft-cited reason for increasing fatalities is related to vehicle type. First, we look at vehicle 
age at the time of the crash, precisely the difference between the model year and the crash year. 
We found that age did not influence the severity of the crash. Being struck by a newer vehicle was 
equally severe than an older vehicle. This indicates that vehicle safety interventions have not 
affected improving pedestrian safety in the event of a collision. This also means that vehicles have 
not become systematically more dangerous over time. It could be that attributes of vehicle safety 
have cancelled each other out, e.g., infotainment system distraction cancelling the benefits of 
antilock brakes. 

When looking at specific body types, we found that larger and heavier vehicles contribute to 
increased fatality rates, which has been well described in the literature. Pickup trucks were 
significantly causing more harm in 2013 – 2015 with ADC value of 2.8 percent. In the recent years, 
pickups were no more significantly causing pedestrian deaths compared to the base (cars). ADC 
associated with SUVs decreased by 0.5 percent from 2 percent, with a statistically insignificant 
difference. Surprisingly, the ADC have decreased in recent years for trucks, from 6.1 to 5 percent. 
The explosion in urban truck use still results in slightly higher injury severity than cars but has 
perhaps resulted in lower injury severity than in earlier years. The overall crash trends imply that 
trucks (or SUVs) are not driving the surge in pedestrian fatalities in urban areas in Tennessee. Of 
note, we interacted vehicle age with trucks and found no significant change. Based on our limited 
data, newer pickup trucks do not result in a higher chance of severe injury than older pickup trucks. 
An overwhelming majority of pedestrian deaths are still a result of a collision with a car. Heavy 
vehicles (e.g., freight vehicles) have a very high odds (4.93 during the earlier years and 3.31 during 
the recent years) of fatality than a car, but their overall crash numbers are low.
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Table 3: Binomial Logistic Regression Model Estimations for Pedestrian Crashes in Tennessee (2013 – 2019) 

Dependent Variable: Fatal injury given that a 
Pedestrian is involved in a crash 

2013 – 2015 (i)  2016 – 2019 (ii)  ADC (ii – i) 
Odds 
Ratio 

Std. 
Err. ADC 

Std. 
Err. 

 Odds 
Ratio 

Std. 
Err. ADC 

Std. 
Err. 

 Difference 
Std. 
Err. 

Pedestrian Age (Base: 16 - 35 years)            
15 and younger 0.56 0.23 -0.022 0.015  1.03 0.34 0.001 0.014  0.023 0.021 

36 - 50 years 1.23 0.30 0.008 0.009  1.76** 0.34 0.024** 0.008  0.016 0.012 
51 to 65 years 2.86*** 0.61 0.040*** 0.008  3.51*** 0.64 0.052*** 0.008  0.012 0.011 

66 years and above 5.36*** 1.48 0.064*** 0.011  5.47*** 1.25 0.071*** 0.010  0.006 0.014 

White Pedestrian (Base: Otherwise) 1.79** 0.37 0.022** 0.008  1.74** 0.30 0.023** 0.007  0.001 0.011 
Alcohol or Drug Presence in Pedestrian (base: 
not present) 1.52· 0.34 0.016· 0.009  2.17*** 0.37 0.032*** 0.007  0.016 0.011 
Driver Gender (Base: Male)             

Female 0.65* 0.12 -0.016* 0.007  0.78 0.12 -0.010 0.006  0.006 0.010 
Unknown 1.26 0.66 0.009 0.020  0.37· 0.21 -0.041· 0.023  -0.050 0.031 

Driver Alcohol or Drug Presence (Base: not 
present) 3.06*** 0.86 0.043*** 0.011  4.72*** 1.12 0.065*** 0.010  0.022 0.015 
Lighting (Base: Daylight)             

Dark - Lighted 2.77*** 0.55 0.039*** 0.008  3.78*** 0.67 0.056*** 0.007  0.016 0.011 
Dark - not lighted 2.68*** 0.73 0.038*** 0.011  3.94*** 0.84 0.057*** 0.009  0.019 0.014 

Dawn or Dusk 2.18· 0.92 0.030· 0.016  1.66 0.72 0.021 0.018  -0.009 0.024 

Intersection (Base: otherwise) 0.77 0.15 -0.010 0.008  0.66* 0.11 -0.017* 0.007  -0.008 0.010 
Posted Speed Limit (Base: 16 - 34 MPH)            

15 MPH and lower 0.55· 0.17 -0.023· 0.012  0.30** 0.11 -0.050** 0.015  -0.027 0.019 
35 MPH and higher 2.38*** 0.51 0.033*** 0.008  3.07*** 0.58 0.047*** 0.008  0.014 0.011 

Vehicle age (at the time of impact) 0.99 0.01 0.000 0.000  0.99 0.01 0.000 0.000  0.000 0.001 
Vehicle Type (Base: Cars)             

Pickup 2.08** 0.45 0.028** 0.008  1.34 0.26 0.012 0.008  -0.016 0.012 
SUVs 1.69* 0.37 0.020* 0.008  1.44* 0.25 0.015* 0.007  -0.005 0.011 

Heavy Vehicle 4.93*** 1.64 0.061*** 0.013  3.31*** 0.86 0.050*** 0.011  -0.011 0.017 
Minivan 1.40 0.57 0.013 0.016  1.26 0.44 0.010 0.014  -0.003 0.021 

Other/ Unknown vehicle 0.70 0.74 -0.014 0.041  0.37 0.28 -0.042 0.032  -0.028 0.052 
Hit-and-run Vehicle (base: otherwise) 1.64· 0.44 0.019· 0.010  2.68*** 0.55 0.041*** 0.008  0.022· 0.013 
Straight Midblock Maneuver (base: otherwise) 3.16*** 0.65 0.044*** 0.008  2.82*** 0.51 0.043*** 0.008  -0.001 0.011 
Pedestrian home census block with "p" 
proportion of people earning >$100K 0.07** 0.06 -0.100** 0.034  0.57 0.32 -0.024 0.023  0.077· 0.041 
Pedestrian home census block with "p" 
proportion of people walking to work 0.02* 0.04 -0.146* 0.065  0.05* 0.06 -0.126* 0.054  0.020 0.085 
Pedestrian home census block with "p" 
proportion of Black population 1.76· 0.53 0.022· 0.012  1.44 0.37 0.015 0.011  -0.006 0.016 
Constant 0.00*** 0.00 - -  0.00*** 0.00 - -  - - 
Number of observations = 9,399 3,976 -  5,423 -  - 
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Dependent Variable: Fatal injury given that a 
Pedestrian is involved in a crash 

2013 – 2015 (i)  2016 – 2019 (ii)  ADC (ii – i) 
Odds 
Ratio 

Std. 
Err. ADC 

Std. 
Err. 

 Odds 
Ratio 

Std. 
Err. ADC 

Std. 
Err. 

 Difference 
Std. 
Err. 

LR chi2(27) 336.51 -  663.84 -  - 
Prob > chi2 0.000 -  0.000 -  - 
Pseudo R2 0.2249 -  0.2869 -  - 
Log likelihood = -1405.063 -579.891 -  -825.172 -  - 

· p-value < 0.1, * p-value < 0.05, ** p-value<0.01, *** p -value < 0.001
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4.4 Home-Based Approach 
With the pedestrian home coordinates, we uncovered and explored patterns of pedestrian 
crashes from a different perspective – distance. Since we knew the crash and home-based 
coordinates, we calculated the distance between those locations. One thing to note about the 
distance analyses is outliers. Pedestrian Home to Crash Distance (PHCD) for out-of-state and out-
of-country visitors and tourists is exceptionally high and possibly distorts the trends and findings. 
As such, we capped the distance to home at 50 miles for our home-based analyses, which also 
helped filter out travelers in an urban area. 

 
Figure 4.14: Histogram showing PHCD distribution for all pedestrians 

We explore the PHCD distribution profile with the help of a distance histogram (see Figure 4.14). 
The histogram observes the distance profiles for non-residential and residential areas. These are 
all urban, non-interstate crashes that occur in the residential or non-residential areas. PHCD 
profiles for pedestrian crashes were different for residential and non-residential areas. Forty 
percent of pedestrians were struck by a vehicle within a mile of their home in non-residential 
areas with a wide distribution of PHCD. In contrast, 70 percent of pedestrians hit in residential 
areas were within one mile of their home. 

We wanted to see if there were any notable differences in the PHCDs over the years. Upon only 
investigating the fatal pedestrian crashes in Tennessee, we find that median PHCD has increased 
by sixfold, from 0.47 miles in 2009 to 2.68 miles in 2019. This increase is also significant as 
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determined by a regression trend line (coef. = 0.230, p-value = 0.003) (Figure 4.15). We use median 
values of PHCD for this analysis to avoid the outliers even if the data is capped at 50 miles because 
it is still substantial compared to the reported median distances. This finding suggests that 
pedestrians are involved in fatal crashes further from home and could potentially explain why 
the crashes are more severe in Tennessee. 

 
Figure 4.15 Trend illustrating the increase in median Pedestrian Home to Crash Distance (PHCD) 

We can conclude that pedestrians are dying further from home on high-speed roads with a speed 
limit of 35 mph or higher. Those roads comprise around 80 percent of fatal crashes. This increase 
also links up with nighttime and non-residential or commercial area crashes, accounting for 
approximately 75 percent of the total fatal crashes. This novel finding might also be related to 
the suburbanization of poverty and gradual change in walking behavior in the urban areas of 
Tennessee, rendering the population to work at places further from their homes with increased 
exposure to a hostile pedestrian environment. More detailed work is needed to investigate the 
possibility of suburbanization aggravating the pedestrian injury severity. 
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Chapter 5 Risk Analysis and Decision Support 
Framework  

5.1 Background 
Popular quantitative prediction models for practitioners are developed in the Highway Safety 
Manual (HSM) (74). The HSM predicts the distribution of annual crashes using safety performance 
functions (SPFs) and Crash Modification Factors (CMFs). While these models can be used to 
identify hot spots for crashes, it can be difficult or impossible to model the impact of interventions 
not captured by current CMFs, such as building a new sidewalk, reducing speeds on a major 
roadway, or non-locational countermeasures (CMs) (i.e., improving vehicle standards). 
Quantitative risk measures have been developed to identify crash hot spots and fairly compare 
safety performance across locations and over time. Decision-makers seek to find CMs that 
produce the most significant reduction in risk to pedestrians for the least cost. Decision makers 
may also screen new projects for pedestrian risk before construction. 

The need to transition to proactive, data-driven, and area-wide safety solutions has been 
highlighted in the Safe System approach proposed as a part of the US Department of 
Transportation’s “Road to Zero” effort [68]. Decision-makers need tools to quantitatively 
characterize system risk in a region or location to understand the implications of their choices. 
Current decision frameworks sometimes qualitatively characterize risk [69]. Current quantitative 
metrics often focus on likelihood and consequence separately, failing to simultaneously address 
all three components of the risk triplet (scenario, likelihood, consequence) developed in (75). 

This section expands on existing concepts of risk and decision frameworks using relatively simple 
but effective quantitative tools to allow for easy quantitative risk assessment. This expanded 
framework will leverage the HSM model to predict the number of crashes on a total roadway and 
illustrate the use of probabilistic validation metrics to assess the quality of these predictions. We 
will train a separate model to predict the outcome of each crash. A probabilistic, quantitative risk 
profile is developed using the predictions for the number of crashes and the outcome and used 
to select the optimal subset of CMs via a linear program. Additionally, if a decision maker wants 
to consider uncertainty, a dynamic programming approach is developed to select the optimal 
subset of CMs based on the possible risk reduction values distribution. 

5.2 Methodology 
5.2.1 The Decision Framework and Quantitative Risk 
Leveraging existing consequences and likelihood, this section proposes an expanded 
quantitative risk measure as follows: 

 
… (eq. 1) 

Consequently, an alternative formulation of risk (or total harm) is proposed (shown in … (eq. 1)) 
which collapses the scenario and likelihood terms into a single factor - the number of crashes. 
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Given that a crash has occurred, the consequence represents its severity. These three factors 
represent the “levers” by which decision makers can impact the risk via their decisions about the 
three E’s and the ordering of preference for intervention types (limit exposure > reduce likelihood 
given exposure > reduce consequences given crash). 

Lastly, we must convert the number and outcomes of crashes to a risk profile. One way to 
accomplish this is to represent the risk as a unit less weighted sum of the crashes of each 
outcome type. In the TITAN database, crash outcomes are labeled as property damage only 
(PDO), possible injury (PI), non-incapacitating injury (NI), incapacitating injury (I), or fatal (K). The 
random forest classifier model developed in this article to predict class outcome struggled to 
distinguish PI from NI crashes. The weights given to each outcome type are dependent on the 
decision maker’s aversion to each type of outcome - with higher weights given to more severe 
outcomes. For example, crashes involving vulnerable populations - such as children, the elderly, 
and people with disabilities - can be weighted more severely. We can accomplish this by further 
predicting if a crash involves the population of interest (based on existing or projected trends) 
and weighing it accordingly. Such an approach can be valuable in ensuring equity in decisions 
about pedestrian systems. By setting weights to estimate the cost incurred by each crash 
outcome, this approach could also convert the risk to an expected dollar consequence of 
pedestrian crashes (76). However, we recommend caution when placing a dollar amount to 
prevent the loss of human life. 

An advantage of this definition of risk is its scalability, that is, its ability to define risk over a city 
or region. To define risk over a region, one needs to add the risk in each road segment and 
intersection within that region. Using the above definition of risk is a straightforward summation 
but characterizing the risk on each roadway and intersection of a city/region may be too labor-
intensive to be practical.  

5.2.2 Predicting the Number of Crashes 
We used the HSM model to predict the number of crashes at a location and discuss a method to 
validate the accuracy of these predictions. The HSM method is applicable to a roadway network, 
a facility, or an individual site (74). This method is applicable to rural two-lane, two-way roads, 
rural multi-lane highways, and urban and suburban arterials. This chapter focuses on pedestrian 
crashes, which primarily occur in urban regions on arterials, and proposes continuous rank 
probability score (CRPS), which is a probabilistic validation metric, to validate the model. 

5.2.3 Predicting Crash Consequences 
A prediction of the consequence of each crash is necessary to characterize the risk profile. From 
the TITAN dataset, crash outcomes are categorized as property damage only, possible injury, 
non-incapacitating injury, incapacitating injury, or fatal. From the TITAN database, the features 
found to be meaningful covariates are age of the pedestrian, posted speed limit, number of lanes, 
gender of the pedestrian, body type of the striking vehicle (truck or not truck), light conditions 
(daylight, dark - not lit, and dark - lit). Speed is a significant driver of the crash outcome. Ideally, 
crash speed or traffic conditions at the time of the crash would be used as a covariate. However, 
this isn’t easy to obtain. As a surrogate, an estimate of typical traffic conditions is obtained from 
an INRIX data set. This dataset is a collection of speed measurements made on significant 
roadways in Tennessee. We took these readings at 5-minute intervals and for multiple days 
across months and years. A speed snapshot is taken by finding the hour most similar (i.e., closet 
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year, closest month, closest hour) to when the crash occurred. The maximum, minimum, and 
mean speeds within this hour provide a snapshot of similar traffic conditions.  

As shown in Figure 5.1b, the TITAN data has significant class imbalance. To correct for this, the 
synthetic minority over-sampling (SMOTE) technique is used, using Python’s built-in “SMOTE” 
package from the imbalanced-learn library, to synthetically generate samples from less 
frequently occurring classes [37]. SMOTE generates synthetic data from the underrepresented 
classes (see Ref. (77) for further details). The classes after performing SMOTE are shown in Figure 
5.1a.  

 
Figure 5.1 a) Crash outcomes after SMOTE, b) crash outcomes before SMOTE 

Then, the data is split into training and validation sets, with 30 percent of the data held back for 
validation. We explored various model forms, including logistic regression, random forest (RF), 
decision tree, k-nearest neighbors (KNN), and support vector classification (SVC). Both KNN and 
RF the had similar accuracy results (85 percent on the test set) and misclassification errors (Mean 
Absolute Error of 0.2 on the test set). KNN had slightly better performance, but RF allows for the 
prediction of a class probability, not just a single class prediction. This is a useful property for risk 
assessment, given the inherent randomness of crash outcomes. Thus, the RF model is selected. 
The most critical covariates are shown in Figure 5.2. The essential features are age and speed, 
confirming results found elsewhere in the literature (44; 78; 79). Interestingly, we did not find 
vehicle body type and gender (of the pedestrian) significant predictors (80). 

A confusion matrix representing model accuracy on the validation set is shown in Figure 5.3. The 
model performs very well in the most extreme classes: property damage only and fatal crashes. 
Most errors occur in the central, standard classes: potential injury + non-incapacitating injury and 
incapacitating injury. This could indicate that the extreme cases are easily differentiated from the 
rest of the crashes, while the significant crash types are similar, and their outcomes depend more 
on chance. This could also highlight the somewhat arbitrary nature of crash classification and 
errors in injury classification inherent in police crash data. For example, two similar crashes could 
be classified differently based on the preference of the responding officer, or a crash could be 
classified as NI, only to develop into a more severe injury later. 
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Figure 5.2 Relative Importance of covariates 

 
Figure 5.3 Confusion matrix: validation set accuracy 

5.2.4 Evaluating and Selection Counter Measures 
Choosing from competing proposed interventions can be difficult. Decision makers (DMs) often 
seek to minimize cost, minimize motor vehicle transit times, or remedy issues identified by public 
complaints. However, such heuristic decision rules have been shown to inadvertently favor 
wealthy, well-served communities and motor vehicle commuters (81; 82). A quantitative, risk-
based decision framework can systematize the decision process - making it more transparent 
and robust against bias. Such quantitative approaches will favor projects with the largest 
reduction in risk for the least cost. They can also quantify the ''do-nothing'' risk, that is, the 
increase in risk if no action is taken to mitigate the impact of on-going societal changes like the 
aging population and increasing use of trucks and SUVs (4). Several risk-based decision 
frameworks have been developed to choose the CMs which will result in the largest reduction 
pedestrian risk - including the Systematic Safety Project Selection Tool (76) and linear 
programming based approaches (83; 84). However, these approaches use deterministic 
estimates of the number of crashes, with no considerations for the crash outcomes or 
uncertainty in the predictions or use qualitative risk assessments. this article expands on these 
approaches to use quantitative, probabilistic approaches and to include crash outcomes. 

To model the risk reduction (or increase) of various CMs, one must predict the risk distribution 
in the current conditions (i.e., base case), predict the risk distribution following implementation 
of each proposed CM, and quantify the increase or reduction in risk. The shift between the 
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predicted risk distribution in the base case and the risk distribution after the implementation of 
the CM represents the risk impact. This shift is itself a distribution of potential risk reduction (or 
increase) values. By convention, we define a positive value to indicate a reduction in risk and a 
negative value to indicate an increase in risk. Thus, the greater these values, the greater the risk 
impact of the CM. In order to account for the cost of a CM, these risk reduction values can be 
normalized (divided) by the cost of the CM. We refer to this as the distribution of cost-normalized 
risk (CNR) values. If the risk is expressed in a dollar cost amount, this CNR is equivalent to the 
benefit to cost ratio proposed elsewhere in the literature (76). 

After quantifying the risk impact of proposed CMs, one can select from them in multiple ways. 
The simplest approach is to select the CM with the greatest expected CNR. We refer to this 
measure as the risk reduction metric (RRM), and it is given as: 

 
where 𝐸𝐸[] is the expected value, 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is risk impact of the CM, and 𝐶𝐶 is the cost of the CM in 
dollars. The numerator of this equation is the expected change in risk. This is a measure of the 
expected total risk impact of the CM. As will be shown below, it may be used in select the optimal 
subset of CMs. 

We quantified the risk impact of countermeasures and selected the optimal countermeasure 
with the following approaches.  

1. Characterize the risk profile in the base case using N Monte Carlo (MC) samples. 

a. Determine the local conditions (AADT, geometry) and calibrate for local 
conditions. Determine the predicted distribution for the number of annual 
crashes for each road segment or intersection using the HSM approach. Validate 
the predictions using CRPS or an alternative probabilistic validation metric. Adjust 
the input assumptions and/or Empirical Bayes (EB) weights until the model 
prediction satisfies the desired level of accuracy. 

b. Determine the population distribution for speeds traveled on each road 
segment/intersection, population distribution for the age of pedestrians who are 
struck, portion of trucks involved in pedestrian crashes, and gender ratio of 
pedestrians involved in crashes. 

c. Generate N MC scenarios. For each N MC scenario, predict the number of crashes 
by drawing from the predicted distribution from part (a). For each crash, randomly 
draw the pedestrian’s age, pedestrian gender, speed conditions, and motor 
vehicle body type. Predict the crash outcome based on the probability of each 
crash type predicted with the RF model. Optional step to sort crashes into crash 
typologies (i.e., crash while vehicle turning, crash while pedestrian crossing 
outside the crosswalk, etc.). 

d. Convert crash numbers and outcomes to risk via a weighted sum. 

2. Model the impacts of proposed CMs (including population changes). 

a. If changes in AADT or road length, re-run the HSM prediction. 
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b. If the proposed CMs are designed to mitigate the number of crashes, determine 
which crash types are prevented by this intervention and the predicted level of 
efficacy. If the proposed CMs impact crash severity, one should update the 
population distributions for age, speed, gender, and striking vehicle body 
distributions. Repeat the MC scenarios. If a crash is a type that is mitigated by the 
proposed CM, randomly determine if that crash is prevented based on the 
predicted CM efficacy. If the crash is not mitigated, predict its outcome with the 
updated population distributions. 

c. Convert crash numbers and outcomes to risk via a weighted sum. 

3. Calculate the distribution of possible risk reduction values and the RRM of each 
proposed CMs. 

4. If selecting one CM from a group, select the CM with the highest RRM or expected risk 
reduced (deterministic approach) or select the CM whose distribution of CNR (or risk 
reduction) values stochastically dominates the other CMs (stochastic approach). 

5. If selecting a subset of CMs, use the vanilla knapsack optimization or dynamic knapsack 
optimization. 

5.3 Numerical Illustrations 
This section contains two numerical illustrations demonstrating how to use the concepts 
developed in this chapter. The first demonstrates how a DM could model the impact of a group 
of CMs and select one from them. The second demonstrates how a DM could select a subset of 
DMs that transit authorities have proposed across regions. 

5.3.1 Numerical Illustration 1: Invest in pedestrian safety on Nolensville Pike 
or Hillsboro Pike? 
This synthetic example evaluates whether Nashville city transit officials should install sidewalks, 
install new crossing facilities, or invest in strategies to limit super-speeding on Nolensville Pike - 
a major, high-speed arterial in south Nashville - or Hillsboro Pike - a major, high-speed arterial 
running through a higher-income area of Nashville. This synthetic example illustrates how these 
risk assessment and decision methods can prioritize CMs in high-risk areas (like Nolensville), even 
if they are more expensive than CMs in lower-risk areas (like Hillsboro). This example only 
examines crashes away from existing intersections and crossing facilities (as designated in the 
TITAN database). These are ‘5-T’ type roads (two lanes in each direction with a turning lane) with 
no medians. For both roads, there is assumed to be on-street, parallel parking. For Nolensville 
Pike, each of these interventions is assumed to cost the same amount - nominally $1 million. The 
length of Nolensville is approximated as 9.3 miles using Google maps. Also, the number of 
driveways is estimated at ten major commercial driveways, 50 minor commercial driveways, 400 
minor residential, and five other driveways. 

The annual average daily traffic (AADT) is taken from a TDOT database [47] and is shown in Table 
4. An AADT value is provided for most years. Missing years are linearly interpolated. The local 
calibration factor is calculated as .0118, representing the expected ratio of pedestrian crashes to 
motor vehicle-only crashes. Using these factors, the distribution of the number of annual crashes 
is predicted using the HSM. The mean number of annual crashes is predicted to be 1.02. Each 
crash type is further sorted into two typologies: crashes that occur when a pedestrian is walking 
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along the road shoulder or sidewalk (if one is installed) and crashes which occur when a 
pedestrian is trying to cross the street. This sorting follows current trends, with 43 percent of 
crashes crossing and all others walking-along crashes. Note, since this example explores non-
intersection crashes (as designated by the location code in the TITAN database), these crossing 
crashes occur when a pedestrian is trying to cross outside designated crossing facilities. While 
this use may be contrary to designer intention, decision-makers must construct risk profiles in 
the as-used conditions, not as-intended conditions, especially given the lack of safe, convenient 
crossing facilities on major roadways like Nolensville Pike and the significant number of crossing 
crashes. These predictions are validated using CRPS, and the validation results are shown in 
Table 4. The average CRPS value is 0.75 crashes. 

Table 4 HSM prediction model validation results 

Year 
Nolensville Pike  Hillsboro Pike 

Crashes AADT CRPS  Crashes AADT CRPS 

2011 0 22,239 0.39  0 30,577 0.13 
2012 0 25,667 0.38  0 30,577 0.13 
2013 0 23,916 0.38  0 30,350 0.18 
2014 0 22,165 0.38  0 29,570 0.14 
2015 0 22,590 0.37  0 30,197 0.13 
2016 4 26,591 2.45  1 29,228 0.43 
2017 3 28,297 1.53  1 28,321 0.43 
2018 1 30,003 0.28  1 27,414 0.38 
2019 1 27,132 0.28  1 24,535 0.44 
2020 3 30,641 1.53  1 25,912 0.43 
2021 1 30,461 0.28  0 25,912 0.15 

Similarly, for Hillsboro Pike, each of these interventions is assumed to cost the same amount - 
nominally $0.8 million. The length of Hillsboro is approximated as 6.5 miles using Google maps. 
Also, the number of driveways is estimated at ten major commercial driveways, 50 minor 
commercial driveways, 400 minor residential, and five other driveways. The AADT is taken from 
a TDOT database (8). The local calibration factor is calculated as 0.0126. The mean number of 
annual crashes is predicted to be 0.52 crashes. These predictions are validated using CRPS, and 
the validation results are shown in Table 4. The average CRPS value is 0.27 crashes. Similarly, 
each crash type is further sorted into crashes that occur when a pedestrian is walking along the 
road shoulder or sidewalk and crashes which occur when a pedestrian is trying to cross the 
street.  

For each crash, the crash outcome also needs to be predicted. To that end, distributions need to 
be assumed for the hour of the crash (used to find traffic speed conditions), age of pedestrian 
struck, gender ratio, and the portion of trucks in the vehicle fleet. The relative frequency of the 
hour when the crash occurs is assumed to follow current trends, and these trends are shown in 
Figure 5.4a. After the crash hour is selected, this is used to determine the typical traffic speed 
conditions (mean speed, max speed, and min speed). These values are taken from the INRIX 
database and are shown in Figure 5.4b. As shown in this Figure 5.4, Nolensville Pike has higher 
top speeds and lower minimum speeds, but they have similar mean speeds. The striking vehicles 
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are assumed to be 45 percent trucks, and the pedestrians struck are assumed to be 31 percent 
women (following current trends). 

 
Figure 5.4 Assumed Distributions of Crash Hour and Traffic Conditions 

The distribution of the age of pedestrians struck is shown in Figure 5.5 (following current trends). 
After predicting the crash outcomes, the number of crashes of each type is converted to a unitless 
risk via weighted summation. These weights are taken as: 9.5 (PDO), 115 (NI/PI), 500(I), and 10500 
(K). These weights are left to user preference. Next, the impact of the proposed interventions is 
modeled. The new sidewalk installations are only assumed to prevent walking along crashes, and 
the improved crossing facilities are assumed to prevent only crossing crashes. Each of these 
proposals is deemed 30 percent effective by a traffic safety professional, preventing 30 percent 
of crashes of the appropriate type. These interventions have no impact on the crash outcome 
(i.e., severity once a crash occurs). The last proposed countermeasure is assumed to only impact 
crash outcomes by reducing super-speeding. This CM assumes that the maximum hourly speed 
will be reduced by 10 percent. This is assumed to impact crash outcome only, though it may also 
impact the number of crashes. 

The base case risk and the risk after implementing the CM are shown in Figure 5.6. The expected 
value of risk for the base case and after implementing each CM is shown in Table 5. Even though 
these roads have similar AADTs and mean travel speeds, they have very different risk profiles; 
Nolensville Pike has a much higher expected risk, indicating that it is significantly riskier to 
pedestrians. The expected risk reduction and the RRM for each CM are also shown in Table 5. 

 
Figure 5.5 Predicted age of pedestrians struck 
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Figure 5.6 Predicted risk in base case and after interventions 

Table 5 Risk reduction metrics of the proposed interventions 

Case Expected Risk (Mean) 
E[Risk 

Reduced] 
RRM 

Base Case (Nolensville)  1422 NA NA 
Install Sidewalks (Nolensville)  1191 231 2.3 × 10-4 
Crossing Facilities (Nolensville) 1219 202 2.02 × 10-4 
Reduce super-speeding (Nolensville) 1409 13.4 1.34 × 10-4 
Base Case (Hillsboro)  679 NA NA 
Install Sidewalks (Hillsboro) 601 78 9.73 × 10-5 
Crossing Facilities (Hillsboro) 560 118 1.48 × 10-4 
Reduce super-speeding (Hillsboro) 652 27 3.32 × 10-5 

Even though each CM is more expensive to implement on Nolensville, a rational decision maker 
should still invest in this road due to the more significant risk reduction and greater risk per dollar 
spent (i.e., higher RRM values). The optimal CM is installing sidewalks on Nolensville since it has 
the highest RRM value. However, thus far, we have only considered the expected risk reduction, 
failing to consider the uncertainty in our prediction of risk reduction. To do so, we must consider 
the distribution of cost normalized risk reduction values for each CM using a stochastic 
dominance approach. To this end, the cumulative distribution functions (CDFs) of cost-
normalized risk reduction values for each CM is computed; these are shown in Figure 5.7 (with 
Nolensville Pike CDFs shown with solid lines and Hillsboro Pike CDFs shown with dashed lines). 
We assume the DM is only interested in CNR values rather than the distribution of risk reduction 
values since they desire to spend their money as efficiently as possible. As shown in this Figure, 
installing sidewalks on Nolensville first-order stochastically dominates the other CMs since its 
CDF is less than or equal to all other CDF values (i.e., its CDF is to the right of the others) at all 
values. Thus, when considering uncertainty, installing sidewalks in Nolensville is the optimal CM.  
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Figure 5.7 CDF of risk reduced per dollar (Nolensville - solid line, Hillsboro Pike - dashed lines) 

5.3.2 Numerical Illustration 2: Optimizing CMs for an entire region 
A decision-maker could also use these concepts when selecting which proposed 
countermeasures to implement for an entire region. This could optimize the expenditures at a 
city, state, or regional level. In this approach, a decision maker seeks to maximize the risk reduced 
while satisfying budget constraints. In this example, various synthetic CMs are proposed and 
scored for their potential risk reduction and cost. These values are shown in Table 6. 

For each CM, the cost is assumed to be known, and the risk reduction is assumed to be an 
independent Gaussian distribution. This risk scoring can be done with sophisticated methods, 
like those proposed in this chapter, or with simple expert elicitation (i.e., expert prediction of 
several crashes prevented and prediction of change in outcomes). Using an arbitrary budget of 
$5 million, the optimal subset of CMs is chosen using a vanilla knapsack optimization. 
Alternatively, the budget could be varied at a different amount, and the amount of risk reduced 
by the optimal subset at each budget level computed. For budgets varying between 0 to $5 
million, the amount of risk reduced by the optimal subset of CMs is shown in Figure 5.8. 

Table 6 Numerical Example 2: Selecting optimal sub-set of CMs (Budget $5MM) 

Option 
E[Risk 

Reduced] 
Std. 
Dev. 

Cost 
(MM) 

RRM × 
107 

Selected 
(Det.) 

Selected 
(Stoch.) 

1 200 20 $1 20 N N 
2 500 30 $2 25 N N 
3 50 10 $0.10 50 Y N 
4 1000 200 $4 25 Y* Y 
5 1000 50 $4 25 Y* Y 
6 100 50 $0.50 20 Y Y 
7 300 40 $3 10 N N 
8 900 20 $3.80 23.7 N N 
9 30 5 $0.20 15 N N 

10 200 30 $0.30 66.7 Y Y 
11 300 50 $1 30 N N 
12 50 7 $0.50 10 N N 
13 40 5 $2.20 1.8 N N 

Note: no preference between Y* options 
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Figure 5.8 Alternative problem formulation: How much risk can be reduced with a budget of $X MM? 

This approach can determine the required budget expenditure to achieve the desired level of risk 
reduction. However, by failing to consider uncertainty, a DM cannot differentiate between option 
4 and option 5 since they have the same expected risk reduction and cost, but option 5 has 
significantly less uncertainty (variance). When using stochastic methods to select the optimal 
subset of CMs, a DM would choose option 5. A DM can place bounds on the expected risk 
reduction by considering uncertainty, as shown in Figure 5.8. In this manner, a DM can identify 
events that occur around a budget of $8 million, where the uncertainty increases sharply due to 
the addition of CM option 4, which has significant uncertainty in its outcome. A decision maker 
may not pursue this option due to its high uncertainty. 

5.4 Proposed Actions 
Existing approaches to pedestrian safety are often reactive and hyper-local - with conditions 
being improved at the location of a crash, while similar risky road conditions in nearby areas are 
ignored. Road safety audits and interventions are the main engineering tool used in this regard. 
This hyper-local approach fails to consider systemic changes (i.e., regulation to improve the safety 
of cars, aging populations, etc.). Existing decisions are sometimes made in an ad-hoc manner that 
implicitly favors privileged communities rather than a quantitative, risk-informed manner. This 
chapter adopts an existing data-driven method to predict the number of crashes in the roadway 
- the HSM method - and proposes using probabilistic validation metrics, such as CRPS, to validate 
these predictions before deploying them. A classification model using a random forest classifier 
is developed to predict the outcome of crashes. Using this prediction for crash number and crash 
outcome, a risk profile can be obtained via a weighted summation of crash count and outcome. 

Then, this section develops an approach to predict the impact of proposed countermeasures 
(including population changes). A risk reduction metric and a stochastic dominance approach are 
proposed to select from a single potential countermeasure. Alternatively, linear programming 
approaches are developed to select the optimal subset from a group of proposed CMs. While the 
HSM approach and random forest model are the crash number and crash outcome models 
deployed here, this general approach and decision framework are agnostic to the exact model 
forms. Based on user preference, any model could be used, including sophisticated statistical or 
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deep learning tools or simple approaches, like expert elicitation. Regardless of the model form, 
validation is recommended to ensure the selected model captures local conditions. Future 
research is needed to capture the local conditions further when predicting risk, such as the 
inclusion of local land use and local socio-economic factors to account for health disparities when 
predicting the crash outcome. 

The current efforts to improve traffic pedestrian safety in the United States are not working. 
Nationally, pedestrian fatalities have increased by 51 percent from 2009 to 2019, despite decision 
makers’ stated support for improving pedestrian safety (85), as well as advocacy groups and 
governments’ efforts to reduce the number and consequence of crashes. Government officials 
have overemphasized the contribution of individual pedestrian and motor vehicle user behavior 
to the poor state of traffic safety in the US. Government officials have particularly emphasized 
the impact of pedestrian actions (86). Decision makers are caught in a “correlation equals 
causation” bias (87).  Because certain pedestrian behaviors and characteristics - like risky 
midblock crossing or older pedestrians - are over-represented in the pedestrian fatality data, 
traffic decision-makers assume that they cause the rise in pedestrian fatalities. When examining 
the cause of an individual crash, this may be true. An older individual may die in a crash that a 
younger person could have survived, and reducing mid-block crossings in high traffic, often 
lower-income areas, will decrease the rate of crashes. However, decision-makers fail to recognize 
that these phenomena are further symptoms of the pedestrian traffic safety problem. Individuals, 
pedestrians, and bicyclists exhibit risky behavior because the current system is fundamentally 
not designed for them or easy to use. 

Furthermore, if “non-normative” risky behaviors like mid-block crossing are so common as to 
have a significant impact on pedestrian safety, they are no longer non-normative; instead, they 
are a feature of how users are adopting to the system. In the case of the mid-block crossing issue, 
pedestrians are displaying this risky behavior because they have no safe or convenient location 
at which to cross, they do not know how to use existing facilities, or they do not know or 
appreciate the consequences (or enforcement implications) of mid-block crossing. Decision-
makers must transition the way they think about non-expected behaviors. If pedestrians, 
bicyclists, and motor vehicles routinely use the system in a risky manner contrary to the 
designer’s intentions, decision-makers must understand this is a symptom of poorly designed 
infrastructure and inadequate enforcement or education. Decision-makers should intervene to 
encourage less risky behavior, particularly by making the safer option the easiest option. 

Decision makers are also caught in an anchoring bias (87). Existing and historical decisions or 
designs represent the starting point from which incremental adjustments to improve pedestrian 
safety are made. This is even the case with new construction projects, often built to replicate the 
existing, risky systems. Decision-makers are also struggling to balance the competing criteria by 
which decision alternatives are evaluated. America is a driving-heavy culture, and decision-
makers often prioritize motor vehicle needs at the expense of pedestrian safety. While safety or 
the number of crashes eliminated is often an evaluation criterion, it is often just one criterion 
among many competing criteria, including traffic delays  (88). Decision-makers should consider 
transitioning to a “safety as a value” approach (89). Rather than treating pedestrian and bicyclist 
risk as one of many competing priorities, decision-makers can treat safety as a core value that 
must be met in all projects. Decision-makers can set a maximum level of pedestrian risk and 
design all projects to satisfy this constraint or only consider projects that satisfy this constraint. 
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Quantitative risk and decision frameworks - such as the methods proposed in this section, can 
assist decision-makers in compensating for these biases. By predicting risk in the as-used (rather 
than as-intended) condition, decision-makers can better predict the risk experienced by 
pedestrians. Further, decision-makers can screen projects for risk before implementing them, 
potentially disrupting the anchoring trap since replications of current high-risk designs will be 
flagged before implementation. In addition to selecting from two competing interventions, this 
approach could be used to select from multiple proposed interventions on a larger scale. This 
could disrupt the cycle of under-investment in low-income, high-risk areas - since projects in 
these areas are more likely to have higher risk reduction and RRM values. 

By developing a quantitative risk profile, rather than the qualitative profiles (i.e., number of risk 
factors) previously developed, risk assessment can be scaled to develop a risk profile of an entire 
city, region, or state. This regional risk profile can be obtained by simply summing the risk profiles 
of that region’s roadways and intersections. Since this is computationally expensive, a reasonably 
good risk profile can be obtained by summing the M largest (or riskiest) roadways and N most 
prominent (or riskiest) intersection. In this manner, the risk-reduction impact of large-scale, non-
location specific (i.e., improving vehicle standards, improving driver education, etc.) 
countermeasures can be compared to location-specific CMs. 

Statewide agencies (specifically the Department of Transportation) have an incredible 
responsibility and opportunity to improve pedestrian safety statewide. Specifically, urban areas 
are where the bulk of overall crashes and severe and fatal injuries occur. Focusing specifically on 
severe crashes, roadways in TDOT jurisdiction are disproportionately responsible for a large 
amount of pedestrian injury and death. Some of the highest risk factors are related to the built 
environment. Traffic speed (and the number of lanes) is a core driver of pedestrian crashes.  

TDOT cannot wait until technology solutions are developed to improve safety for pedestrians. 
Auto manufacturers are marketing more dangerous-to-pedestrian vehicles, and every indication 
points to a riskier fleet on the roadway – more large trucks and SUVs. Urban freight trends will 
continue to push larger vehicles into dense and mixed urban environments. Meanwhile, our 
population continues to age, and older pedestrians and drivers will continue to become more 
vulnerable. To counter this trend, TDOT should be more aggressive at building safe pedestrian 
infrastructure on its state highways (urban arterials). 

This starts with the following core recommendations:  

1) Adopt a Safe Systems Approach to safety, particularly pedestrian safety. This involves 
addressing many aspects of road safety across the network, in addition to targeting hyper 
local high-risk hotspots.  

2) Reform standard designs and drawings that mandate pedestrian accommodation in 
urban areas. This includes high-quality pedestrian infrastructure, crossings, and 
signalization as a standard design. Never follow design standards to replicate current 
failing practices that routinely contribute to vulnerable road user deaths.  

3) Reduce maximum design speeds to 35 mph on any urban arterial that will include 
pedestrian destinations. This includes any roadway that has commercial land uses 
adjacent or connects or bisects residential locations.  

4) Work with local agencies to reduce existing speed limits on urban arterials and 
accompany those speed limit changes with quick-build traffic calming interventions to 



 

 
53 

reduce the severity of inevitable conflicts with pedestrians. These could include interim 
design solutions that reduce the crossing width. 

5) Focus on midblock interventions to reduce speeds (and speeding) and increase 
pedestrian midblock crossing opportunities. Pedestrians have little tolerance for long 
detours, particularly when crossing at a signalized intersection is as perilous as a midblock 
crossing. Develop and widely deploy known midblock safety countermeasures like 
Rectangular Rapid Flashing Beacons with sufficient pedestrian islands and lighting.  

6) Work with transit agencies to ensure that transit corridors (often along commercial 
arterials) include sufficient pedestrian crossing opportunities supporting transit. Every 
transit rider accessing a transit stop on an arterial must cross the arterial for the return 
trip. Injured and killed pedestrians, particularly from lower-income neighborhoods are 
often killed farther from home than walking distance. 

In a Safe Systems approach, many other factors can improve pedestrian safety. Specifically 
enforcing speed limits and drunk or drugged driving will improve the safety of all road users, but 
particularly the most vulnerable of them, pedestrians. However, TDOT should work to ensure its 
designs, particularly its new designs, are self-enforcing so that overburdened law enforcement is 
not saddled with growing enforcement needs because road design encourages unsafe speed and 
vehicle operations. 
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Chapter 6 Conclusions 
The objectives of this research are to look at the overall growth of pedestrian crashes in the last 
decade and determine the factors causing it, classify and investigate the trends from the 
perspective of diverse variables, and utilize home-based approaches to explain the causes of the 
rise further and implement a quantitative decision framework for selecting countermeasures. 
With the help of TITAN data, after determining the home coordinates of pedestrians and 
combining it with the census data, we were able to conduct pedestrian injury trend analysis in 
detail while verifying the significance with statistical tests such as one-way ANOVA, regression 
trend analysis, and multivariate severity modeling. We performed injury severity modeling and 
aptly compared two time periods using average discrete change (ADC) and utilized home-based 
approaches to perform distance analyses.  

The substantial causes that lead to the current condition of pedestrian safety in the US mirror 
Tennessee. Pedestrian crashes are more severe in the urban areas of Tennessee, and the 
roadway design bears a large burden. We found that most fatal crashes happened on straight 
high-speed roads with speeds of more than 35 mph and multiple lanes (typically the 
characteristics of urban arterials in Tennessee) during the nighttime and significantly far from 
the residential areas (pedestrians’ homes). Our findings conform with the most recent US 
pedestrian safety research, which associates the urban pedestrian safety crisis in the US with the 
functional classification of the roadways (10; 64; 65; 67). Other variables that also accounted for 
the disproportionate increase were the male pedestrians, middle-aged older adults (51 – 65), 
female drivers, DUIs, driving on the weekends, and being struck by newer vehicle models. 

Many speculative claims regarding aggravating pedestrian safety do not hold for Tennessee. We 
discovered that increased pedestrian crash severity in Tennessee was not associated with the 
vehicle sizes, such as in the case of SUVs, pickups, or heavy trucks, although the US pedestrian 
fatality trend studies assert that larger vehicles, such as SUVs and pickups, are largely responsible 
for the increase in fatality (10; 64; 65; 67). The severity increase was also not associated with the 
alcohol or drug impairment of the pedestrians, as it only affected a small proportion of fatalities 
with weak significance. While we did see an overall increase in the total fatality from 2009 – 2019 
concerning these variables, our trends do not suggest a significant change in severity over time. 
Although we see a significant increasing trend of pedestrian severity in the older adults (51 – 64) 
group, trends associated with elderly pedestrians are almost constant. Thus, the overall increase 
is also not associated with the aging population. That said, our injury severity models reveal the 
higher odds of being fatally injured while struck by larger vehicles if the pedestrian is impaired 
with alcohol or drugs or is elderly. Still, this finding should not be confused with Tennessee’s 
longitudinal increase in severity. 

Using the home-based approach, we explored the distance between the pedestrian crash 
locations and their respective homes. We discovered that those distances’ median value 
consistently increased from 2009 – 2019, almost a sixfold increase from 0.5 miles to 3 miles. It 
suggested that people are getting hit further from their homes. Suppose we combine this finding 
with the defective road design narrative. In that case, we can picture a scenario where 
pedestrians are getting hit on the urban arterials far from their homes, shifting even further over 
the years. To that end, we can speculate a sprawled suburban scenario that fits this story, causing 
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the increase in the severity of pedestrian crashes (51). Further investigation is necessary to 
explore the effect of suburbanization on pedestrian crashes. 

One limitation of this study is the use of police-reported data. Although we have alleviated the 
risk of injuries being underreported by only looking at the fatal and total reports, police data still 
have other parts and potentially subjective reporting that is based on the police officer's 
discernment or as informed by the (surviving) witnesses. Variables such as the pedestrian's 
position during the crash, injury outcomes except for fatal injury, and residential and non-
residential crashes suffer from this issue. The data also suffers from only containing those 
crashes that were reported. Unreported crashes and critical near misses, which would have 
resulted in injury, are not considered, underreporting the total exposure. This study attempts to 
understand the overall situation of pedestrian safety during the last decade in Tennessee. 
However, during the process, it reveals essential factors without diving deeper into any one of 
them. Future studies should dissect each factor and explore its effect on increasing the severity 
of pedestrian crashes. Likewise, this study focuses only on the urban areas of the cities of 
Tennessee. The results from this study can only be generalized in states with similar urban 
structures and socioeconomic conditions. Similar studies in multiple US cities are required to 
answer the pedestrian crisis in the US. Another limitation is that the study relies only on a decade 
of data for the trend analyses from 2009 to 2019. Sophisticated time-series models demand a 
large number of observations while also accounting for autocorrelation. Nonetheless, this report 
provides the clearest picture yet of Tennessee’s pedestrian injury and fatality crisis with some 
fundamental steps forward to improve safety.  
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