

SUBGRADE ---DETAIL D

DESIGN SPEED	(MPH)	
LEVEL TOPO	70	
ROLLING TOPO	60	
MOUNTAINOUS TOPO	50	

DESIGN STANDARDS (FOR GIVEN DESIGN SPEED)		DESIGN SPEEDS (MPH)				
		30	40	50	60	70
MAXIMUM CURVATURE (DEGREES) 0.04 MAX. S.E.		19°00′	10°00′	6°00′	3°45′	
MAXIMUM CURVATURE (DEGREES) 0.06 MAX. S.E.		21°00′	11°15′	6°45′	4°15′	2°45′
MAXIMUM CURVATURE (DEGREES) 0.08 MAX. S.E.		22°45′	12°15′	7°30′	4°45′	3°00′
MAXIMUM CURVATURE (DEGREES) 0.10 MAX. S.E.		24°45′	13°15′	8°15′	5°15′	3°30′
MAXIMUM RURAL GRADES (%) (PAGE 496,TABLE VII-1)	LEVEL TOPO		5	4	3	3
	ROLLING TOPO		6	5	4	4
	MOUNTAINOUS TOPO		8	7	6	5
MAXIMUM URBAN GRADES (%) (PAGE 525,TABLE VII-4)	LEVEL TOPO	8	7	6	5	
	ROLLING TOPO	9	8	7	6	
	MOUNTAINOUS TOPO	1 1	10	9	8	
8 MINIMUM STOPPING SIGHT DISTANCE (FEET)		200-200	275-325	400-475	525-650	625-850
MINIMUM "K" VALUE	REST VERTICAL CURVE	30-30	60-80	110-160	190-310	290-540
	SAG VERTICAL CURVE	40-40	60-70	90-110	120-160	150-220
SUPERELEVATION		SEE STANDARD DRAWINGS RD-SE-2 & RD-SE-3				

- 1) SEE GUARDRAIL STANDARD DRAWINGS FOR TYPICAL GUARDRAIL PLACEMENT.
- SEE DETAIL A, B, C, OR D ON THIS SHEET FOR ROUNDING.
- CLEAR ZONE WIDTH SHALL BE DETERMINED FROM STANDARD DRAWING RD-S-11. FOR URBAN DESIGN SEE PAGE 534-535.
- SEE STAND<mark>ard drawing rd-s-11 for fill and cut slope tables, rounding on top</mark> OF CUT SL<mark>op</mark>es and toe of fill slopes, and special rock cut treatment.
- (5) SEE STANDARD DRAWING RD-S-11A FOR ROUNDING OF ROADSIDE DITCH SLOPES.
- (6) THE SLOPES OF THE SHOULDER AND ROADWAY PAVEMENT SHALL NOT EXCEED AN ALGEBRAIC DIFFERENCE OF 0.07 FOOT PER FOOT.
- (7) "K" VALUE IS A COEFFICIENT BY WHICH THE ALGEBRAIC DIFFERENCE IN GRADE MAY BE MULTIPLIED TO DETERMINE THE LENGTH IN FEET OF THE VERTICAL CURVE.
- (8) ANY LENGTH OF STOPPING SIGHT DISTANCE WITHIN THE RANGE OF VALUES ESTABLISHED ON PAGE 500, TABLE VII-3 IS ACCEPTABLE FOR A SPECIFIC SPEED. HOWEVER, VALUES APPROACHING OR EXCEEDING THE UPPER LIMIT OF THE RANGE SHOULD BE USED AS THE BASIS FOR DESIGN WHEREVER CONDITIONS PERMIT.
- (9) RURAL ONLY PAGE 494. FOR URBAN DESIGN SEE PAGE 524.
- (10) 4:1 SLOPES MAY BE USED WITH NARROW MEDIANS AND LOW DESIGN SPEEDS.
- (11) MINIMUM MEDIAN WIDTH IS TO BE 48 FEET WHEN USING 6 FEET WIDE INSIDE SHOULDERS. MINIMUM MEDIAN WIDTH IS TO BE 64 FEET WHEN USING 12 FOOT WIDE INSIDE SHOULDERS.

- ALL NEW AND REHABILITATED BRIDGES SHALL BE DESIGNED FOR HS-20 LOADING. THE MINIMUM CLEAR WIDTH FOR NEW AND REHABILITATED BRIDGES SHALL BE EQUAL TO THE FULL WIDTH OF THE APPROACH ROADWAY, CURB-TO-CURB OR FULL SHOULDER WIDTH AS APPLICABLE.
- BRIDGES TO REMAIN IN PLACE SHOULD HAVE ADEQUATE STRENGTH AND AT LEAST THE WIDTH OF THE TRAVELED WAY PLUS 2 FEET CLEARANCE ON EACH SIDE, BUT SHOULD BE CONSIDERED FOR ULTIMATE WIDENING OR REPLACEMENT IF THEY DO NOT PROVIDE AT LEAST 3 FEET CLEARANCE ON EACH SIDE OR ARE NOT CAPABLE OF HS-20 LOADINGS. AS AN INTERIM MEASURE, ALL BRIDGES THAT ARE LESS THAN FULL WIDTH SHOULD BE CONSIDERED FOR SPECIAL NARROW BRIDGE TREATMENTS SUCH AS SIGNING AND PAVEMENT MARKING.

■ MINOR REVISION -- FHWA APPROVAL NOT REQUIRED.

STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION

DESIGN STANDARDS 4-6 LANE ARTERIAL HIGHWAYS WITH DEPRESSED MEDIANS

11-14-86 | RD-TS-3A